|
a. 1 |
||
|
b. 3 |
||
|
c. 5 |
||
|
d. 7 |
|
a. 5d |
||
|
b. 6f |
||
|
c. 6p |
||
|
d. The subshell does not exist. |
|
a. is representative of a transition metal. |
||
|
b. is not allowed. |
||
|
c. is representative of a p-block element. |
||
|
d. is representative of an element with two valence electrons. |
|
a. xenon |
||
|
b. silicon |
||
|
c. gallium |
||
|
d. iodine |
|
a. boron trifluoride |
||
|
b. water |
||
|
c. carbon dioxide |
||
|
d. methane |
|
a. 2 |
||
|
b. 6 |
||
|
c. 10 |
||
|
d. 14 |
|
a. 2 |
||
|
b. 4 |
||
|
c. 8 |
||
|
d. 12 |
|
a. lithium. |
||
|
b. carbon. |
||
|
c. silicon. |
||
|
d. nitrogen. |
|
a. chlorine. |
||
|
b. argon. |
||
|
c. neon. |
||
|
d. boron. |
|
a. Moving from C to N adds an electron to an occupied orbital. |
||
|
b. The Zeff value for oxygen is raised due to additional shielding from fluorine. |
||
|
c. Moving from N to O pairs two electrons in a single orbital. |
||
|
d. The Zeff value decreases with an increase in electron repulsion. |
|
a. fluorine |
||
|
b. chlorine |
||
|
c. bromine |
||
|
d. iodine |
|
a. indium |
||
|
b. gallium |
||
|
c. boron |
||
|
d. aluminum |
|
a. RuNH33+ |
||
|
b. MnO4- |
||
|
c. CuNO3 |
||
|
d. Zn(ClO4)2 |
|
a. argon |
||
|
b. chlorine |
||
|
c. xenon |
||
|
d. bromine |
|
a. 2p |
||
|
b. 2s |
||
|
c. 3p |
||
|
d. 3s |
|
a. 1+ |
||
|
b. 1- |
||
|
c. 2+ |
||
|
d. There is no charge on the nitrogen. |
|
a. The sulfur disobeys the octet rule. |
||
|
b. Sulfur has more valence electrons than oxygen. |
||
|
c. Sulfur has a greater number of electron shells than oxygen. |
||
|
d. Sulfur is less electronegative than oxygen. |
|
a. H2O |
||
|
b. SF4 |
||
|
c. NH3 |
||
|
d. XeF4 |
|
a. square planar |
||
|
b. octahedral |
||
|
c. tetrahedral |
||
|
d. trigonal planar |
|
a. 0 |
||
|
b. 1 |
||
|
c. 2 |
||
|
d. 3 |
|
a. N2 |
||
|
b. C2 |
||
|
c. B2 |
||
|
d. Be2 |
|
a. high-spin iron(II) |
||
|
b. low-spin iron(II) |
||
|
c. high-spin iron(III) |
||
|
d. low-spin iron(III) |
|
a. water |
||
|
b. oxalic acid |
||
|
c. ammonia |
||
|
d. hydrobromic acid |
|
a. 2pσ |
||
|
b. 2pπ |
||
|
c. 2pσ* |
||
|
d. 2pπ* |
|
a. [Co(NH3)6]3-. |
||
|
b. [NiCl6]4-. |
||
|
c. [Ni(NH3)6]2+. |
||
|
d. [CoF6]3-. |
|
a. paramagnetic [FeCl6]3+. |
||
|
b. paramagnetic [Fe(CN)6]3+. |
||
|
c. diamagnetic [Co(NH3)6]3+. |
||
|
d. diamagnetic [CoF6]2+. |
|
a. K3[Rh(CN)6]. |
||
|
b. Na2[Rh(CN)6]. |
||
|
c. Na2[Rh(NH3)6]. |
||
|
d. K[Rh(CN)6]. |
|
a. amminetrichloroplatinate(II) ion. |
||
|
b. sodium amminetrichloroplatinate(II). |
||
|
c. sodium amminetrichloroplatinate(IV). |
||
|
d. potassium amminetrichloroplatinate(II). |
|
a. [Ni(CO)6]3+ |
||
|
b. [Ru(bipy)3]2+ |
||
|
c. [FeCl6]3+ |
||
|
d. [Co(CN)6]3- |
|
a. trigonal bipyrimidal |
||
|
b. tetragonal |
||
|
c. tetrahedral |
||
|
d. square planar |
|
a. a ≠ b ≠ c, α = β = γ = 90° |
||
|
b. a = b = c, α = β = γ ≠ 90° |
||
|
c. a = b = c, α = β = γ = 90° |
||
|
d. a ≠ b ≠ c, α = β = γ ≠ 90° |
|
a. base-centered orthorhombic |
||
|
b. face-centered cubic |
||
|
c. body-centered orthorhombic |
||
|
d. base-centered monoclinic |
|
a. 2 |
||
|
b. 4 |
||
|
c. 6 |
||
|
d. 8 |
|
a. Unlike crystalline solids, amorphous solids lack a repeating unit cell, leading to a random organization of atoms. |
||
|
b. Unlike crystalline solids, amorphous solids tend to lose structural organization as their lattices extend. |
||
|
c. Amorphous solids are said to behave as supercooled liquids, leading to an ease in transitioning between physical states. |
||
|
d. The formation of amorphous solids is aided by the rapid cooling of a molten compound. |
|
a. high melting point |
||
|
b. low electrical conductivity |
||
|
c. high level of hardness |
||
|
d. high water solubility |
|
a. 4 |
||
|
b. 6 |
||
|
c. 8 |
||
|
d. 14 |
|
a. 0 |
||
|
b. 1 |
||
|
c. 2 |
||
|
d. 4 |
|
a. fluorine |
||
|
b. chlorine |
||
|
c. bromine |
||
|
d. iodine |
|
a. selenium |
||
|
b. tellurium |
||
|
c. oxygen |
||
|
d. sulfur |
|
a. The unit cell is the simplest repeating unit in the crystal lattice. |
||
|
b. Opposing faces of a unit cell are parallel. |
||
|
c. Each unit cell edge is equivalent in length. |
||
|
d. Each unit cell edge connects equivalent points/atoms. |
|
a. -604 kJ/mol |
||
|
b. -660 kJ/mol |
||
|
c. -740 kJ/mol |
||
|
d. -819 kJ/mol |
|
a. Sodium has a larger ionic radius than cesium, allowing for less anion attraction. |
||
|
b. Due to its size, cesium makes more contact with adjacent anions than sodium does. |
||
|
c. The NaCl radius ratio is greater than that of CsCl, forcing anions farther from the metal cation. |
||
|
d. Chlorine is too electronegative to be completely compatible with sodium. |
|
a. 1 |
||
|
b. 4 |
||
|
c. 8 |
||
|
d. 12 |
|
a. 2 and 4 |
||
|
b. 4 and 2 |
||
|
c. 4 and 4 |
||
|
d. 6 and 4 |
|
a. perovskite |
||
|
b. NaCl |
||
|
c. rutile |
||
|
d. CsCl |
|
a. 14 |
||
|
b. 26 |
||
|
c. 74 |
||
|
d. 86 |
|
a. ABC |
||
|
b. AAA |
||
|
c. ABB |
||
|
d. ABA |
|
a. 4 |
||
|
b. 6 |
||
|
c. 8 |
||
|
d. 12 |
|
a. barium selenide |
||
|
b. beryllium oxide |
||
|
c. titanium(II) oxide |
||
|
d. strontium chloride |
|
a. 4. |
||
|
b. 6. |
||
|
c. 8. |
||
|
d. 12. |
|
a. 4 |
||
|
b. 6 |
||
|
c. 8 |
||
|
d. 12 |
|
a. 4 |
||
|
b. 6 |
||
|
c. 8 |
||
|
d. 12 |
|
a. 0.310 Ä |
||
|
b. 0.414 Ä |
||
|
c. 0.621 Ä |
||
|
d. 0.932 Ä |
|
a. 0.23 Ä |
||
|
b. 0.27 Ä |
||
|
c. 0.40 Ä |
||
|
d. 0.54 Ä |
|
a. There are at least three M spheres within the lattice. |
||
|
b. The lattice is body centered. |
||
|
c. The lattice is close-packed cubic. |
||
|
d. The system is hexacoordinate. |
|
a. 4. |
||
|
b. 6. |
||
|
c. 8. |
||
|
d. 10. |
|
a. pure metal. |
||
|
b. alkali metal. |
||
|
c. substitutional alloy. |
||
|
d. interstitial alloy. |
|
a. substitutional alloy, interstitial alloy |
||
|
b. intermetallic alloy, interstitial alloy |
||
|
c. substitutional alloy, intermetallic alloy |
||
|
d. pure metal, intermetallic alloy |
|
a. ease electron flow over band gaps. |
||
|
b. slow down the activity of the atom, promoting a gradual increase in conductivity. |
||
|
c. impede conductivity due to increased atom vibration. |
||
|
d. allow the metal to behave as a superconductor. |
|
a. Superconductors are perfectly paramagnetic. |
||
|
b. Most superconductors require low temperatures to be efficient. |
||
|
c. Superconductors exhibit high resistance to electron flow. |
||
|
d. Superconductors exhibit large energy gaps between the valence and conductor bands. |
|
a. has a limited number of electrons present. |
||
|
b. is often separated from the HOMO by an unsurmountable energy gap. |
||
|
c. serves as a dopant to the valence band. |
||
|
d. serves to provide electrons to the valence band. |
|
a. conductors. |
||
|
b. semiconductors. |
||
|
c. insulators. |
||
|
d. superconductors. |
|
a. conduction band electrons outnumber valence band holes. |
||
|
b. electron flow is halted due to dopant impurities. |
||
|
c. an equal number of valence band holes and conductor band electrons exist, making dopants unnecessary. |
||
|
d. doping is facilitated by halides. |
|
a. phosphorus |
||
|
b. boron |
||
|
c. antimony |
||
|
d. carbon |
|
a. Intrinsic superconductors require a dopant to conduct electricity. |
||
|
b. Semiconductors have no energy gap between the valence and conductor bands. |
||
|
c. Semiconductors increase in conductivity with increasing temperatures. |
||
|
d. Intrinsic semiconductors are more efficient than extrinsic semiconductors. |
|
a. LUMO, antibonding orbital |
||
|
b. LUMO, bonding orbital |
||
|
c. HOMO, nonbonding orbital |
||
|
d. HOMO, antibonding orbital |
|
a. valence band composition, with semiconductors and insulators having half- and fully filled HOMOs, respectively. |
||
|
b. electron placement, with electrons occupying the conductance bands of semiconductors but not of insulators. |
||
|
c. resistivity, with semiconductors being less conductive than insulators with increasing temperatures. |
||
|
d. band gap size, with insulator band gaps being greater in energy than those of semiconductors. |
|
a. intrinsic semiconductor. |
||
|
b. high-temperature superconductor. |
||
|
c. low-temperature superconductor. |
||
|
d. extrinsic semiconductor. |
|
a. I |
||
|
b. II |
||
|
c. I and II |
||
|
d. none of the above |
|
a. 2 |
||
|
b. 6 |
||
|
c. 8 |
||
|
d. 14 |
|
a. I |
||
|
b. II |
||
|
c. I and II |
||
|
d. none of the above |
|
a. intrinsic semiconductors. |
||
|
b. high-temperature superconductors. |
||
|
c. low-temperature superconductors. |
||
|
d. extrinsic semiconductors. |
|
a. I- |
||
|
b. Br- |
||
|
c. Cl- |
||
|
d. F- |
|
a. 0 |
||
|
b. 2 |
||
|
c. 5 |
||
|
d. 7 |
|
a. The Lewis acid becomes softer. |
||
|
b. The Lewis acid becomes harder. |
||
|
c. No change is observed. |
||
|
d. The Lewis acid behaves as a base. |
|
a. 2.27 x 10-12 |
||
|
b. 1.48 x 10-10 |
||
|
c. 6.76 x 10-5 |
||
|
d. 4.66 x 10-2 |
|
a. No change is observed. |
||
|
b. The Lewis base becomes harder. |
||
|
c. The Lewis base becomes softer. |
||
|
d. The Lewis base behaves as an acid. |
|
a. HI |
||
|
b. HF |
||
|
c. HCl |
||
|
d. HBr |
|
a. C-O |
||
|
b. C-C |
||
|
c. C-S |
||
|
d. C-N |
|
a. NH3 |
||
|
b. HgCl2 |
||
|
c. Hg(NH3)2 |
||
|
d. Cl- |
|
a. acid. |
||
|
b. base. |
||
|
c. chelator |
||
|
d. catalyst. |
|
a. acid. |
||
|
b. base. |
||
|
c. both A and B |
||
|
d. none of the above |
|
a. FeSO43, 3Ag2SO4, 3Pt(SCN)4 |
||
|
b. Fe2(SO4)3, 6Ag2SO4, 3Pt(SCN)4 |
||
|
c. Fe2(SO4)3, 6Ag2SO4, 3Pt(SCN)2 |
||
|
d. Fe2(SO4)3, 3Ag2SO4, 3Pt(SCN)4 |
|
a. Ag+ |
||
|
b. Ru3+ |
||
|
c. Be2+ |
||
|
d. Zn2+ |
|
a. Pt4+ |
||
|
b. Cd2+ |
||
|
c. Ni2+ |
||
|
d. Fe3+ |
|
a. HI |
||
|
b. HF |
||
|
c. HBr |
||
|
d. HCl |
|
a. oxalic acid |
||
|
b. carbon monoxide |
||
|
c. carbon suboxide |
||
|
d. carbon dioxide |
|
a. RbNO3 |
||
|
b. LiNO3 |
||
|
c. NaNO3 |
||
|
d. KNO3 |
|
a. aluminum |
||
|
b. boron |
||
|
c. indium |
||
|
d. gallium |
|
a. PbO |
||
|
b. SiO |
||
|
c. CO |
||
|
d. GeO |
|
a. Phosphorus has an additional electron shell. |
||
|
b. Phosphorus has two more valence electrons than nitrogen. |
||
|
c. Phosphorus is more electronegative than nitrogen. |
||
|
d. Nitrogen has three unpaired electrons in its ground state. |
|
a. oxygen |
||
|
b. sulfur |
||
|
c. selenium |
||
|
d. tellurium |
|
a. HClO. |
||
|
b. HClO2. |
||
|
c. HClO3. |
||
|
d. HClO4. |
|
a. bromine |
||
|
b. chlorine |
||
|
c. iodine |
||
|
d. fluorine |
|
a. The electronegativity increases with additional electron shells. |
||
|
b. The electrons of the larger metals are farther from the nucleus and easier to remove. |
||
|
c. The smaller metals have a greater attraction to the lone pairs on the H2O oxygens. |
||
|
d. The presence of d-orbital electrons in the larger metals allows for decreased water reactivity. |
|
a. 2+ |
||
|
b. 3+ |
||
|
c. 3- |
||
|
d. 5+ |
|
a. calcium |
||
|
b. rubidium |
||
|
c. indium |
||
|
d. silicon |
|
a. Group 2 |
||
|
b. Group 3 |
||
|
c. Group 4 |
||
|
d. Group 5 |
|
a. strontium |
||
|
b. potassium |
||
|
c. magnesium |
||
|
d. gallium |
|
a. Group 1 |
||
|
b. Group 2 |
||
|
c. Group 5 |
||
|
d. Group 7 |