| a. 1 | ||
| b. 3 | ||
| c. 5 | ||
| d. 7 |
| a. 5d | ||
| b. 6f | ||
| c. 6p | ||
| d. The subshell does not exist. |
| a. is representative of a transition metal. | ||
| b. is not allowed. | ||
| c. is representative of a p-block element. | ||
| d. is representative of an element with two valence electrons. |
| a. xenon | ||
| b. silicon | ||
| c. gallium | ||
| d. iodine |
| a. boron trifluoride | ||
| b. water | ||
| c. carbon dioxide | ||
| d. methane |
| a. 2 | ||
| b. 6 | ||
| c. 10 | ||
| d. 14 |
| a. 2 | ||
| b. 4 | ||
| c. 8 | ||
| d. 12 |
| a. lithium. | ||
| b. carbon. | ||
| c. silicon. | ||
| d. nitrogen. |
| a. chlorine. | ||
| b. argon. | ||
| c. neon. | ||
| d. boron. |
| a. Moving from C to N adds an electron to an occupied orbital. | ||
| b. The Zeff value for oxygen is raised due to additional shielding from fluorine. | ||
| c. Moving from N to O pairs two electrons in a single orbital. | ||
| d. The Zeff value decreases with an increase in electron repulsion. |
| a. fluorine | ||
| b. chlorine | ||
| c. bromine | ||
| d. iodine |
| a. indium | ||
| b. gallium | ||
| c. boron | ||
| d. aluminum |
| a. RuNH33+ | ||
| b. MnO4- | ||
| c. CuNO3 | ||
| d. Zn(ClO4)2 |
| a. argon | ||
| b. chlorine | ||
| c. xenon | ||
| d. bromine |
| a. 2p | ||
| b. 2s | ||
| c. 3p | ||
| d. 3s |
| a. 1+ | ||
| b. 1- | ||
| c. 2+ | ||
| d. There is no charge on the nitrogen. |
| a. The sulfur disobeys the octet rule. | ||
| b. Sulfur has more valence electrons than oxygen. | ||
| c. Sulfur has a greater number of electron shells than oxygen. | ||
| d. Sulfur is less electronegative than oxygen. |
| a. H2O | ||
| b. SF4 | ||
| c. NH3 | ||
| d. XeF4 |
| a. square planar | ||
| b. octahedral | ||
| c. tetrahedral | ||
| d. trigonal planar |
| a. 0 | ||
| b. 1 | ||
| c. 2 | ||
| d. 3 |
| a. N2 | ||
| b. C2 | ||
| c. B2 | ||
| d. Be2 |
| a. high-spin iron(II) | ||
| b. low-spin iron(II) | ||
| c. high-spin iron(III) | ||
| d. low-spin iron(III) |
| a. water | ||
| b. oxalic acid | ||
| c. ammonia | ||
| d. hydrobromic acid |
| a. 2pσ | ||
| b. 2pπ | ||
| c. 2pσ* | ||
| d. 2pπ* |
| a. [Co(NH3)6]3-. | ||
| b. [NiCl6]4-. | ||
| c. [Ni(NH3)6]2+. | ||
| d. [CoF6]3-. |
| a. paramagnetic [FeCl6]3+. | ||
| b. paramagnetic [Fe(CN)6]3+. | ||
| c. diamagnetic [Co(NH3)6]3+. | ||
| d. diamagnetic [CoF6]2+. |
| a. K3[Rh(CN)6]. | ||
| b. Na2[Rh(CN)6]. | ||
| c. Na2[Rh(NH3)6]. | ||
| d. K[Rh(CN)6]. |
| a. amminetrichloroplatinate(II) ion. | ||
| b. sodium amminetrichloroplatinate(II). | ||
| c. sodium amminetrichloroplatinate(IV). | ||
| d. potassium amminetrichloroplatinate(II). |
| a. [Ni(CO)6]3+ | ||
| b. [Ru(bipy)3]2+ | ||
| c. [FeCl6]3+ | ||
| d. [Co(CN)6]3- |
| a. trigonal bipyrimidal | ||
| b. tetragonal | ||
| c. tetrahedral | ||
| d. square planar |
| a. a ≠b ≠c, α = β = γ = 90° | ||
| b. a = b = c, α = β = γ ≠90° | ||
| c. a = b = c, α = β = γ = 90° | ||
| d. a ≠b ≠c, α = β = γ ≠90° |
| a. base-centered orthorhombic | ||
| b. face-centered cubic | ||
| c. body-centered orthorhombic | ||
| d. base-centered monoclinic |
| a. 2 | ||
| b. 4 | ||
| c. 6 | ||
| d. 8 |
| a. Unlike crystalline solids, amorphous solids lack a repeating unit cell, leading to a random organization of atoms. | ||
| b. Unlike crystalline solids, amorphous solids tend to lose structural organization as their lattices extend. | ||
| c. Amorphous solids are said to behave as supercooled liquids, leading to an ease in transitioning between physical states. | ||
| d. The formation of amorphous solids is aided by the rapid cooling of a molten compound. |
| a. high melting point | ||
| b. low electrical conductivity | ||
| c. high level of hardness | ||
| d. high water solubility |
| a. 4 | ||
| b. 6 | ||
| c. 8 | ||
| d. 14 |
| a. 0 | ||
| b. 1 | ||
| c. 2 | ||
| d. 4 |
| a. fluorine | ||
| b. chlorine | ||
| c. bromine | ||
| d. iodine |
| a. selenium | ||
| b. tellurium | ||
| c. oxygen | ||
| d. sulfur |
| a. The unit cell is the simplest repeating unit in the crystal lattice. | ||
| b. Opposing faces of a unit cell are parallel. | ||
| c. Each unit cell edge is equivalent in length. | ||
| d. Each unit cell edge connects equivalent points/atoms. |
| a. -604 kJ/mol | ||
| b. -660 kJ/mol | ||
| c. -740 kJ/mol | ||
| d. -819 kJ/mol |
| a. Sodium has a larger ionic radius than cesium, allowing for less anion attraction. | ||
| b. Due to its size, cesium makes more contact with adjacent anions than sodium does. | ||
| c. The NaCl radius ratio is greater than that of CsCl, forcing anions farther from the metal cation. | ||
| d. Chlorine is too electronegative to be completely compatible with sodium. |
| a. 1 | ||
| b. 4 | ||
| c. 8 | ||
| d. 12 |
| a. 2 and 4 | ||
| b. 4 and 2 | ||
| c. 4 and 4 | ||
| d. 6 and 4 |
| a. perovskite | ||
| b. NaCl | ||
| c. rutile | ||
| d. CsCl |
| a. 14 | ||
| b. 26 | ||
| c. 74 | ||
| d. 86 |
| a. ABC | ||
| b. AAA | ||
| c. ABB | ||
| d. ABA |
| a. 4 | ||
| b. 6 | ||
| c. 8 | ||
| d. 12 |
| a. barium selenide | ||
| b. beryllium oxide | ||
| c. titanium(II) oxide | ||
| d. strontium chloride |
| a. 4. | ||
| b. 6. | ||
| c. 8. | ||
| d. 12. |
| a. 4 | ||
| b. 6 | ||
| c. 8 | ||
| d. 12 |
| a. 4 | ||
| b. 6 | ||
| c. 8 | ||
| d. 12 |
| a. 0.310 Ä | ||
| b. 0.414 Ä | ||
| c. 0.621 Ä | ||
| d. 0.932 Ä |
| a. 0.23 Ä | ||
| b. 0.27 Ä | ||
| c. 0.40 Ä | ||
| d. 0.54 Ä |
| a. There are at least three M spheres within the lattice. | ||
| b. The lattice is body centered. | ||
| c. The lattice is close-packed cubic. | ||
| d. The system is hexacoordinate. |
| a. 4. | ||
| b. 6. | ||
| c. 8. | ||
| d. 10. |
| a. pure metal. | ||
| b. alkali metal. | ||
| c. substitutional alloy. | ||
| d. interstitial alloy. |
| a. substitutional alloy, interstitial alloy | ||
| b. intermetallic alloy, interstitial alloy | ||
| c. substitutional alloy, intermetallic alloy | ||
| d. pure metal, intermetallic alloy |
| a. ease electron flow over band gaps. | ||
| b. slow down the activity of the atom, promoting a gradual increase in conductivity. | ||
| c. impede conductivity due to increased atom vibration. | ||
| d. allow the metal to behave as a superconductor. |
| a. Superconductors are perfectly paramagnetic. | ||
| b. Most superconductors require low temperatures to be efficient. | ||
| c. Superconductors exhibit high resistance to electron flow. | ||
| d. Superconductors exhibit large energy gaps between the valence and conductor bands. |
| a. has a limited number of electrons present. | ||
| b. is often separated from the HOMO by an unsurmountable energy gap. | ||
| c. serves as a dopant to the valence band. | ||
| d. serves to provide electrons to the valence band. |
| a. conductors. | ||
| b. semiconductors. | ||
| c. insulators. | ||
| d. superconductors. |
| a. conduction band electrons outnumber valence band holes. | ||
| b. electron flow is halted due to dopant impurities. | ||
| c. an equal number of valence band holes and conductor band electrons exist, making dopants unnecessary. | ||
| d. doping is facilitated by halides. |
| a. phosphorus | ||
| b. boron | ||
| c. antimony | ||
| d. carbon |
| a. Intrinsic superconductors require a dopant to conduct electricity. | ||
| b. Semiconductors have no energy gap between the valence and conductor bands. | ||
| c. Semiconductors increase in conductivity with increasing temperatures. | ||
| d. Intrinsic semiconductors are more efficient than extrinsic semiconductors. |
| a. LUMO, antibonding orbital | ||
| b. LUMO, bonding orbital | ||
| c. HOMO, nonbonding orbital | ||
| d. HOMO, antibonding orbital |
| a. valence band composition, with semiconductors and insulators having half- and fully filled HOMOs, respectively. | ||
| b. electron placement, with electrons occupying the conductance bands of semiconductors but not of insulators. | ||
| c. resistivity, with semiconductors being less conductive than insulators with increasing temperatures. | ||
| d. band gap size, with insulator band gaps being greater in energy than those of semiconductors. |
| a. intrinsic semiconductor. | ||
| b. high-temperature superconductor. | ||
| c. low-temperature superconductor. | ||
| d. extrinsic semiconductor. |
| a. I | ||
| b. II | ||
| c. I and II | ||
| d. none of the above |
| a. 2 | ||
| b. 6 | ||
| c. 8 | ||
| d. 14 |
| a. I | ||
| b. II | ||
| c. I and II | ||
| d. none of the above |
| a. intrinsic semiconductors. | ||
| b. high-temperature superconductors. | ||
| c. low-temperature superconductors. | ||
| d. extrinsic semiconductors. |
| a. I- | ||
| b. Br- | ||
| c. Cl- | ||
| d. F- |
| a. 0 | ||
| b. 2 | ||
| c. 5 | ||
| d. 7 |
| a. The Lewis acid becomes softer. | ||
| b. The Lewis acid becomes harder. | ||
| c. No change is observed. | ||
| d. The Lewis acid behaves as a base. |
| a. 2.27 x 10-12 | ||
| b. 1.48 x 10-10 | ||
| c. 6.76 x 10-5 | ||
| d. 4.66 x 10-2 |
| a. No change is observed. | ||
| b. The Lewis base becomes harder. | ||
| c. The Lewis base becomes softer. | ||
| d. The Lewis base behaves as an acid. |
| a. HI | ||
| b. HF | ||
| c. HCl | ||
| d. HBr |
| a. C-O | ||
| b. C-C | ||
| c. C-S | ||
| d. C-N |
| a. NH3 | ||
| b. HgCl2 | ||
| c. Hg(NH3)2 | ||
| d. Cl- |
| a. acid. | ||
| b. base. | ||
| c. chelator | ||
| d. catalyst. |
| a. acid. | ||
| b. base. | ||
| c. both A and B | ||
| d. none of the above |
| a. FeSO43, 3Ag2SO4, 3Pt(SCN)4 | ||
| b. Fe2(SO4)3, 6Ag2SO4, 3Pt(SCN)4 | ||
| c. Fe2(SO4)3, 6Ag2SO4, 3Pt(SCN)2 | ||
| d. Fe2(SO4)3, 3Ag2SO4, 3Pt(SCN)4 |
| a. Ag+ | ||
| b. Ru3+ | ||
| c. Be2+ | ||
| d. Zn2+ |
| a. Pt4+ | ||
| b. Cd2+ | ||
| c. Ni2+ | ||
| d. Fe3+ |
| a. HI | ||
| b. HF | ||
| c. HBr | ||
| d. HCl |
| a. oxalic acid | ||
| b. carbon monoxide | ||
| c. carbon suboxide | ||
| d. carbon dioxide |
| a. RbNO3 | ||
| b. LiNO3 | ||
| c. NaNO3 | ||
| d. KNO3 |
| a. aluminum | ||
| b. boron | ||
| c. indium | ||
| d. gallium |
| a. PbO | ||
| b. SiO | ||
| c. CO | ||
| d. GeO |
| a. Phosphorus has an additional electron shell. | ||
| b. Phosphorus has two more valence electrons than nitrogen. | ||
| c. Phosphorus is more electronegative than nitrogen. | ||
| d. Nitrogen has three unpaired electrons in its ground state. |
| a. oxygen | ||
| b. sulfur | ||
| c. selenium | ||
| d. tellurium |
| a. HClO. | ||
| b. HClO2. | ||
| c. HClO3. | ||
| d. HClO4. |
| a. bromine | ||
| b. chlorine | ||
| c. iodine | ||
| d. fluorine |
| a. The electronegativity increases with additional electron shells. | ||
| b. The electrons of the larger metals are farther from the nucleus and easier to remove. | ||
| c. The smaller metals have a greater attraction to the lone pairs on the H2O oxygens. | ||
| d. The presence of d-orbital electrons in the larger metals allows for decreased water reactivity. |
| a. 2+ | ||
| b. 3+ | ||
| c. 3- | ||
| d. 5+ |
| a. calcium | ||
| b. rubidium | ||
| c. indium | ||
| d. silicon |
| a. Group 2 | ||
| b. Group 3 | ||
| c. Group 4 | ||
| d. Group 5 |
| a. strontium | ||
| b. potassium | ||
| c. magnesium | ||
| d. gallium |
| a. Group 1 | ||
| b. Group 2 | ||
| c. Group 5 | ||
| d. Group 7 |