a. By trapping the intermediate in a cycloaddition reaction | ||
b. By separating it from the mixture by GC/MS | ||
c. By separating it from the mixture by column chromatography | ||
d. None of the above |
a. Nucleophilic additions | ||
b. Electrophilic additions | ||
c. Cycloadditions | ||
d. All of the above |
a. Initiation, propagation, termination | ||
b. Initiation, termination, propagation | ||
c. Propagation, termination, initiation | ||
d. Termination, propagation, initiation |
a. 15 kcal/mol | ||
b. -15 kcal/mol | ||
c. 223 kcal/mol | ||
d. -223 kcal/mol |
a. 25 kcal/mol | ||
b. -25 kcal/mol | ||
c. 189 kcal/mol | ||
d. -166 kcal/mol |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. Cannizzaro reaction | ||
b. Sommelet reaction | ||
c. Blanc reaction | ||
d. Friedel-Crafts reaction |
a. Stevens reaction | ||
b. Sommelet reaction | ||
c. Wittig reaction | ||
d. Friedel-Crafts reaction |
a. 1-phenyl-1-butanone | ||
b. Acetophenone | ||
c. 2-phenyl-3-butanone | ||
d. Benzaldehyde |
a. Elimination from organolithium or organomagnesium precursors | ||
b. loss of neutral leaving group | ||
c. photolytic and/or pyrolitic methods | ||
d. All of the above |
a. 2-chloro-2-methylbutane | ||
b. 1-chloro-2-methylbutane | ||
c. 3-chloro-2-methylbutane | ||
d. 4-chloro-2-methylbutane |
a. F2 | ||
b. Cl2 | ||
c. Br2 | ||
d. I2 |
a. Thermal cracking | ||
b. Photolysis bond heterolysis | ||
c. Homolysis of peroxides and azo compounds | ||
d. Electron transfer |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. All of them |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. Free radicals contain an unpaired electron. | ||
b. Radicals are believed to be involved in degenerative diseases and cancers. | ||
c. They are formed by heterolytic cleavage of bonds. | ||
d. Radicals can either be neutral or ionic. |
a. The charge of the sodium ion stabilizes the charge of the chloride ion. | ||
b. The iodide ion renders the ethoxide ion more reactive. | ||
c. Small amounts of alkyl chlorides are converted into the more reactive alkyl iodides. | ||
d. With the presence of NaI, the mechanism changes to Sn1. |
a. B is the kinetic and thermodynamic product. | ||
b. B is the kinetic product, and C is the thermodynamic product. | ||
c. C is the kinetic product, and B is the thermodynamic product. | ||
d. C is the kinetic and thermodynamic product. |
a. (2R,3R)-2,3-dibromopentane | ||
b. (2S,3S)-2,3-dibromopentane | ||
c. (2R,3S)-2,3-dibromopentane | ||
d. (2S,3R)-2,3-dibromopentane |
a. SN1 | ||
b. SN2 | ||
c. E1 | ||
d. E2 |
a. Hydroxide is a weak nucleophile. | ||
b. The sp2 carbon-chlorine bond is stronger than the sp3 carbon-chlorine bond. | ||
c. The chlorine atom is sterically crowded. | ||
d. Both B and C |
a. 1R, 2S | ||
b. 1S, 2R | ||
c. 1R, 2R | ||
d. 1S, 2S |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. Same compound | ||
b. Structural isomers | ||
c. Enantiomers | ||
d. Diastereomers |
a. SN1 | ||
b. SN2 | ||
c. E1 | ||
d. E2 |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. (C2H5)3CCl | ||
b. (C2H5)2CHCl | ||
c. C2H5CH2Cl | ||
d. (C2H5)3CF |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. A chiral center is an atom that is tetrahedrally bonded to four different groups. | ||
b. A chiral molecule has a superimposable mirror image. | ||
c. A chiral molecule does not have any reflective symmetry. | ||
d. All chiral molecules may exist as enantiomers. |
a. The product will have R configuration. | ||
b. The product will have S configuration. | ||
c. The product will be achiral. | ||
d. The product will be a racemic mixture. |
a. It involves a two-step mechanism. | ||
b. It involves a very reactive intermediate. | ||
c. The rate of the reaction depends on the concentration of the base. | ||
d. The rate of the reaction increases in polar solvents. |
a. Phenylmagnesium bromide | ||
b. Ethylphenylmagnesium bromide | ||
c. Benzylmagnesium bromide | ||
d. Benzylicmagnesium bromide |
a. Carbon-carbon bonds | ||
b. Carbon-magnesium bonds | ||
c. Carbon-halide bonds | ||
d. Magnesium-halide bonds |
a. Inversion of configuration occurs. | ||
b. A racemic mixture is formed. | ||
c. Nothing, the chiral center remains unchanged. | ||
d. The product is achiral. |
a. The study of carbon containing compounds | ||
b. The study of compounds containing a carbon-metal bond | ||
c. The study of metals | ||
d. The study of salts |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. Imidazole | ||
b. 1,3-imidazole | ||
c. Diazole | ||
d. 1,3-diazole |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. Isoquinoline | ||
b. Indole | ||
c. Quinoline | ||
d. Pyrrolidine |
a. Isoquinoline | ||
b. Indole | ||
c. Quinoline | ||
d. Pyrrolidine |
a. Thiazole | ||
b. Indole | ||
c. Quinoline | ||
d. Pyrrolidine |
a. CH3CH2CH(OH)CH2Br | ||
b. BrCH2CO2H | ||
c. PhCH2CH2Br | ||
d. None of these are suitable |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. All of the above |
a. Butanal and phenylmagnesium bromide | ||
b. 1-phenyl-3-butanone and NaBH4 | ||
c. Propanal and benzylmagnesium bromide | ||
d. Both A and C |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. IV |
a. I | ||
b. II | ||
c. III | ||
d. None of the above |