a. The data points have a slope close to 1. ![]() |
||
b. The data points are normally distributed. ![]() |
||
c. The data points are nearly linear. ![]() |
||
d. The data points have very little correlation. ![]() |
a. 0.0202 ![]() |
||
b. 0.0357 ![]() |
||
c. 28 ![]() |
||
d. 48 ![]() |
a. If n is odd, there will be an absolute maximum. ![]() |
||
b. If n is even, there will be an absolute minimum. ![]() |
||
c. There will be neither an absolute maximum nor an absolute minimum. ![]() |
||
d. The existence of extremes cannot be determined without more information. ![]() |
a. -3 ![]() |
||
b. -1 ![]() |
||
c. 4 ![]() |
||
d. 8 ![]() |
a. f(x+3)=x2+3x+1. ![]() |
||
b. f(x+3)=x2+3x-4. ![]() |
||
c. f(x+3)=x2-3x. ![]() |
||
d. f(x+3)=x2-3x-1. ![]() |
a. x ≠ ![]() ![]() |
||
b. x ≠ 4 ![]() |
||
c. x< ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. Positive slope and positive y-intercept ![]() |
||
b. Positive slope and negative y-intercept ![]() |
||
c. Negative slope and positive y-intercept ![]() |
||
d. Negative slope and negative y-intercept ![]() |
a. The domain and the range are the same: the set of all real numbers. ![]() |
||
b. The domain and the range are the same: [11.5, +∞). ![]() |
||
c. The domain is [-11.5, +∞); the range is all real numbers. ![]() |
||
d. The domain is all real numbers; the range is [-11.5, +∞). ![]() |
a. y = 3x + 1 ![]() |
||
b. y = (3x + 1)2 -11 ![]() |
||
c. x = y ![]() |
||
d. All of these ![]() |
a. {2, 4, 6, 8} ![]() |
||
b. {-1, -3, -5, -7} ![]() |
||
c. {-4,-3, -2, -1, 0, 1, 2, 3} ![]() |
||
d. {-2, -, 0, 1, 2} ![]() |
a. -3 ![]() |
||
b. -1 ![]() |
||
c. 2 ![]() |
||
d. 4 ![]() |
a. -5 ![]() |
||
b. 4 ![]() |
||
c. 10 ![]() |
||
d. The answer is irrational. ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. (0.25, 1.25] ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. x = log 6 - 5 ![]() |
||
b. x = ![]() ![]() |
||
c. x = ![]() ![]() |
||
d. x = ![]() ![]() |
a. x = -2 ![]() |
||
b. x = -2 or 4 ![]() |
||
c. x = 4 ![]() |
||
d. x is undefined ![]() |
a. [-4, 5] ![]() |
||
b. (-4, 5) ![]() |
||
c. (-4, 0) ![]() ![]() |
||
d. ![]() ![]() |
a. [1, 3] ![]() |
||
b. ![]() ![]() |
||
c. [-2, 3] ![]() |
||
d. ![]() ![]() |
a. If n is odd, the ends of the graph both tend in the positive direction. ![]() |
||
b. If n is even, the ends of the graph both tend in the positive direction. ![]() |
||
c. The ends of the graph will both tend in different directions. ![]() |
||
d. The end behavior cannot be determined without more information. ![]() |
a. The point (1, 0) is on h(x). ![]() |
||
b. The right-hand end behavior of h(x) gets large toward positive infinity. ![]() |
||
c. The domain of h(x) is all positive real numbers. ![]() |
||
d. All of these. ![]() |
a. g(x-5) + 2 ![]() |
||
b. g(x) - 3 ![]() |
||
c. g(x + 5) - 2 ![]() |
||
d. g(x + 2) - 5 ![]() |
a. usually has both positive and negative y- values. ![]() |
||
b. contains the point (0, 1). ![]() |
||
c. has a horizontal asymptote at y = 1. ![]() |
||
d. has a domain of positive real numbers. ![]() |
a. 2. ![]() |
||
b. 3. ![]() |
||
c. 5. ![]() |
||
d. 8. ![]() |
a. Polynomial ![]() |
||
b. Piecewise ![]() |
||
c. Odd ![]() |
||
d. Even ![]() |
a. Exponential ![]() |
||
b. Rational ![]() |
||
c. Quadratic ![]() |
||
d. Cubic ![]() |
a. Polynomial ![]() |
||
b. Piecewise ![]() |
||
c. Logarithmic ![]() |
||
d. Even ![]() |
A. ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. ![]() |
A. ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. All real numbers ![]() |
||
b. x > 0 ![]() |
||
c. x > b ![]() |
||
d. 0 < x < b ![]() |
a. The two graphs make a mirror image over the x-axis. ![]() |
||
b. The two graphs make a mirror image over the y-axis. ![]() |
||
c. The two graphs make a mirror image over the line y = x. ![]() |
||
d. The two graphs make a mirror image over the line y = -x. ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 1.5 (x + 5). ![]() |
||
b. .5(x + 5). ![]() |
||
c. x3 – 5. ![]() |
||
d. x. ![]() |
a. 0 ![]() |
||
b. -0.5 ![]() |
||
c. 6 ![]() |
||
d. 9 ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 2 ![]() |
||
b. 4 ![]() |
||
c. 10 ![]() |
||
d. 32 ![]() |
a. It is always increasing or decreasing. ![]() |
||
b. It has an inverse. ![]() |
||
c. It does not have an inverse. ![]() |
||
d. It is its own inverse. ![]() |
a. 1 second ![]() |
||
b. 1.5 seconds ![]() |
||
c. 2 seconds ![]() |
||
d. 2.5 seconds ![]() |
a. At -4 and 9. ![]() |
||
b. At 4 and -9. ![]() |
||
c. At 1 and 14. ![]() |
||
d. At 20 and -45. ![]() |
a. can be inverted only if the domain is restricted. ![]() |
||
b. passes both the vertical and the horizontal line tests ![]() |
||
c. will have no more than two relative maximums. ![]() |
||
d. will have no more than two relative minimums. ![]() |
a. 0, 3, 7 ![]() |
||
b. 4, 8, -21 ![]() |
||
c. 2, ![]() ![]() |
||
d. -3.5, -1.5, 0 ![]() |
a. 2 and 7 ![]() |
||
b. -2 and 7 ![]() |
||
c. -2 and -7 ![]() |
||
d. 2 and -7 ![]() |
a. is at -2, and the function is positive on the left and negative on the right. ![]() |
||
b. is at 0, and the function is negative on the left and positive on the right. ![]() |
||
c. is at 6, and the function is positive on the left and negative on the right. ![]() |
||
d. is at -36, and the function is negative on the left and positive on the right. ![]() |
a. The function has a vertex at ![]() ![]() |
||
b. The function has two roots. ![]() |
||
c. The range of the function is all positive real numbers. ![]() |
||
d. The function has one relative maximum. ![]() |
a. (a, b) ![]() |
||
b. (a, -b) ![]() |
||
c. (-a, b) ![]() |
||
d. (-a,-b) ![]() |
a. has a minimum at 2. ![]() |
||
b. has a minimum at -2. ![]() |
||
c. has a maximum at 2. ![]() |
||
d. has a maximum at -2. ![]() |
a. has a maximum at -6. ![]() |
||
b. has a minimum at 1.5. ![]() |
||
c. has a minimum at -1.5. ![]() |
||
d. has a maximum at 0. ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 160 years ![]() |
||
b. 300 years ![]() |
||
c. 340 years ![]() |
||
d. 400 years ![]() |
a. 32 feet ![]() |
||
b. 42 feet ![]() |
||
c. 48 feet ![]() |
||
d. 56 feet ![]() |
a. 11% ![]() |
||
b. 15% ![]() |
||
c. 18% ![]() |
||
d. 22% ![]() |
a. 0.04465 ![]() |
||
b. 0.04532 ![]() |
||
c. 0.04687 ![]() |
||
d. 0.04796 ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 9 ![]() |
||
b. 10 ![]() |
||
c. 18 ![]() |
||
d. 19 ![]() |
a. 2010 ![]() |
||
b. 2014 ![]() |
||
c. 2018 ![]() |
||
d. 2024 ![]() |
a. 0.77% ![]() |
||
b. 0.78% ![]() |
||
c. 7.7% ![]() |
||
d. 7.8% ![]() |
a. 17.6 ![]() |
||
b. 18.4 ![]() |
||
c. 19.8 ![]() |
||
d. 20.2 ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
a. -3, 3, 1, 2, 2 ![]() |
||
b. -3, -3, -1, 2, -2 ![]() |
||
c. 3, -3, -1, -2, 2 ![]() |
||
d. 3, 3, 1, -2, -2 ![]() |
a. -8, 0, 8 ![]() |
||
b. -![]() ![]() ![]() |
||
c. -8, 1, ![]() ![]() |
||
d. -![]() ![]() |
a. -1, 2, 4 ![]() |
||
b. undefined, 0, 1 ![]() |
||
c. undefined, 1, 2 ![]() |
||
d. 0.25, 2, 1 ![]() |
a. the function increases between -2 and 5. ![]() |
||
b. the function decreases between -2 and 5. ![]() |
||
c. the function passes from above the axis to below the axis. ![]() |
||
d. the function passes from below the axis to above the axis. ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. A(x)=200x-2x2 ![]() |
||
b. A(x)=x(200-x) ![]() |
||
c. A(x)=2x2-200x ![]() |
||
d. A(x)=2x(200x) ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |