A. A dependent quantity ![]() |
||
B. A rule that relates an input to exactly one output ![]() |
||
C. An independent quantity ![]() |
||
D. A combination of domain and range ![]() |
A. 125 ![]() |
||
B. 25 ![]() |
||
C. 1 ![]() |
||
D. 100 ![]() |
Determine which toolkit function has been transformed with a horizontal shift into the graph below.
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
If the graph below is reflected vertically, shifted to the left by 1, and down by 3, what is the equation of the new graph?
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
Use the table below to find h-1(30).
x | 15 | 30 | 45 | 60 |
h(x) | 20 | 25 | 30 | 35 |
A. 15 ![]() |
||
B. 25 ![]() |
||
C. 45 ![]() |
||
D. 60 ![]() |
In the graph below of g(x), find g-1(2).
A. 1 ![]() |
||
B. 2 ![]() |
||
C. 3 ![]() |
||
D. 4 ![]() |
Determine the range for the piecewise function shown below in the domain [-0.5, 0.5].
A. (1, 0) ![]() |
||
B. [0, 1] ![]() |
||
C. (-0.5, 0) ![]() |
||
D. (0, 0.5) ![]() |
A. x = -1.414, 1.414 ![]() |
||
B. x = -1.489, 1.489 ![]() |
||
C. x = 0 ![]() |
||
D. x = -0.213, 0.212 ![]() |
A. Increasing on ![]() ![]() ![]() |
||
B. Increasing on ![]() ![]() ![]() |
||
C. Increasing on ![]() ![]() ![]() |
||
D. Increasing on ![]() ![]() ![]() |
Which of the following tables demonstrates a one-to-one function?
Table 1:
Input | Output |
3 | 8 |
2 | 16 |
3 | 24 |
Table 2:
Input | Output |
-2 | 3 |
0 | 2 |
2 | 3 |
Table 3:
Input | Output |
-1 | 1 |
0 | 0 |
2 | 2 |
A. Table 1 ![]() |
||
B. Table 2 ![]() |
||
C. Table 3 ![]() |
||
D. None of these ![]() |
Find the equation for the graph below.
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
Given the function t(s) = s3- 4s, evaluate t(4).
A. 48 ![]() |
||
B. 64 ![]() |
||
C. 112 ![]() |
||
D. -48 ![]() |
The graph below represents which toolkit function?
A. Reciprocal ![]() |
||
B. Square Root ![]() |
||
C. Absolute Value ![]() |
||
D. Quadratic ![]() |
a. a ![]() |
||
b. b ![]() |
||
c. c ![]() |
||
d. d ![]() |
Evaluate the domain and range of the function,
A. Domain: ![]() ![]() ![]() |
||
B. Domain: ![]() ![]() ![]() |
||
C. Domain: ![]() ![]() ![]() |
||
D. Domain: ![]() ![]() ![]() |
A. 10 ![]() |
||
B. 4 ![]() |
||
C. 8 ![]() |
||
D. 2 ![]() |
Which of the following is true for the graph below?
A. Decreasing on the intervals ![]() ![]() |
||
B. Concave down on ![]() ![]() |
||
C. Concave up on ![]() ![]() |
||
D. All of these ![]() |
Determine the inflection point(s) for the graph below.
A. x = -1 and x = 1 ![]() |
||
B. x = 0 ![]() |
||
C. x = ![]() ![]() |
||
D. None of these ![]() |
Using the tables below, evaluate f(g(2)) and g(f(1).
x | f(x) |
1 | 3 |
2 | 6 |
3 | 9 |
4 | 12 |
x | g(x) |
1 | 2 |
2 | 4 |
3 | 6 |
4 | 8 |
A. f(g(2)) = 2, g(f(1)) = 1 ![]() |
||
B. f(g(2)) = 6, g(f(1)) = 8 ![]() |
||
C. f(g(2)) = 12, g(f(1)) = 4 ![]() |
||
D. f(g(2)) = 3, g(f(1)) = 8 ![]() |
The graph below represents which toolkit function?
A. Reciprocal ![]() |
||
B. Square Root ![]() |
||
C. Absolute Value ![]() |
||
D. Quadratic ![]() |
Given the function , evaluate t(9).
A. 2 ![]() |
||
B. 12.17 ![]() |
||
C. 13 ![]() |
||
D. 17 ![]() |
A. -1 ![]() |
||
B. 2 ![]() |
||
C. 1 ![]() |
||
D. 0 ![]() |
Using the tables below, evaluate f(g(1)) and g(f(2)).
x | f(x) |
1 | 3 |
2 | 6 |
3 | 9 |
4 | 12 |
x | g(x) |
1 | 2 |
3 | 5 |
6 | 10 |
9 | 12 |
A. f(g(1)) = 6, g(f(2)) = 10 ![]() |
||
B. f(g(2)) = 6, g(f(1)) = 9 ![]() |
||
C. f(g(2)) = 10, g(f(1)) = 6 ![]() |
||
D. f(g(2)) = 5, g(f(1)) = 8 ![]() |
A. f(h)=b ![]() |
||
B. f(3)=12 ![]() |
||
C. f(12)=3 ![]() |
||
D. f(1)=3 ![]() |
The table below represents the dollars (in millions) of Brand X candies sold per year. Use a graphing calculator to fit a linear equation to this data.
Year | 1996 | 1998 | 2000 | 2002 | 2004 | 2006 | 2008 | 2010 | 2012 |
$$ | 1.2 | 1.5 | 1.6 | 1.9 | 2.1 | 2.4 | 2.5 | 2.8 | 3.1 |
A. y = 228.34x - 0.115 ![]() |
||
B. y = 0.115x - 228.34 ![]() |
||
C. y = 5x - 22.49 ![]() |
||
D. Not linear ![]() |
A. 3, decreasing ![]() |
||
B. 2, decreasing ![]() |
||
C. -1.5, decreasing ![]() |
||
D. 1.5, increasing ![]() |
If f(x) is a linear function, find an equation for it given f(4) = -1 and f(9) = 2.
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. -0.5 ![]() |
||
B. 1 ![]() |
||
C. 2.5 ![]() |
||
D. -2.5 ![]() |
A. d(h) = 5h + 2 ![]() |
||
B. d(h) = h - 5 ![]() |
||
C. d(h) = 2h + 5 ![]() |
||
D. d(h) = 5 - 2h ![]() |
Assuming a scale of 1, determine which graph below represents the function y = 1 + 4x.
Graph A
Graph B
Graph C
A. Graph A ![]() |
||
B. Graph B ![]() |
||
C. Graph C ![]() |
||
D. None of these ![]() |
Assuming a scale of 1, determine which graph below represents the function y = 1.5 + 2.5x.
Graph A
Graph B
Graph C
A. Graph A ![]() |
||
B. Graph B ![]() |
||
C. Graph C ![]() |
||
D. None of these ![]() |
A. y = 280 - 12.5x ![]() |
||
B. y = 255 + 12.5x ![]() |
||
C. y = 280 + 0.08x ![]() |
||
D. y = 255 - 0.08x ![]() |
Predict the owl population in North America for the year 2014 if there were 280 in 2008 and 255 in 2010.
A. 230 ![]() |
||
B. 355 ![]() |
||
C. 330 ![]() |
||
D. 205 ![]() |
You just got a new job in retail and you are given two options for your earnings:
Option 1: Base salary of $15,000 per year plus a commission of 14% of your sales.
Option 2: Base salary of $18,000 per year plus a commission of 10% of your sales.
How much money in sales would you need to make in order for Option 1 to yield a higher income than Option 2?
A. More than $12,500 ![]() |
||
B. More than $137,500 ![]() |
||
C. More than $75,000 ![]() |
||
D. More than $18,000 ![]() |
A regression was run to determine if there is a relationship between how many hours of TV a person watches in a month (x) and the number of pizzas a person eats (y). Use a graphing calculator to graph this regression and predict how many pizzas a person who watches 30 hours of TV per month eats.
y = ax + b
a = -1.2
b = 38.7
A. Less than one pizza ![]() |
||
B. Between two and three pizzas per month ![]() |
||
C. Four pizzas ![]() |
||
D. More than four pizzas ![]() |
A. -0.957 ![]() |
||
B. 0.235 ![]() |
||
C. -0.235 ![]() |
||
D. 0.869 ![]() |
Given the table below which represents the dollars (in millions) of Brand X candies sold per year, determine if the trend appears linear. If so, use a graphing calculator to determine what year the dollars of candies sold will reach 3.4 million.
Year | 1996 | 1998 | 2000 | 2002 | 2004 | 2006 | 2008 | 2010 | 2012 |
$$ | 1.2 | 1.5 | 1.6 | 1.9 | 2.1 | 2.4 | 2.5 | 2.8 | 3.1 |
A. 2015 ![]() |
||
B. 2013 ![]() |
||
C. 2018 ![]() |
||
D. Not linear ![]() |
Given the table below, which represents the dollars (in millions) of Brand X candies sold per year, determine if the trend appears linear. If so, use a graphing calculator to determine the correlation coefficient for this regression.
Year | 1996 | 1998 | 2000 | 2002 | 2004 | 2006 | 2008 | 2010 | 2012 |
$$ | 1.2 | 1.5 | 1.6 | 1.9 | 2.1 | 2.4 | 2.5 | 2.8 | 3.1 |
A. 0.876 ![]() |
||
B. 0.996 ![]() |
||
C. -0.993 ![]() |
||
D. Not linear ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. No solution ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
Write an equation for the following transformation of the graph below.
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. x = 5, -5 ![]() |
||
B. x = 3, -7 ![]() |
||
C. x = -3, 7 ![]() |
||
D. No horizontal intercepts ![]() |
The math grades for two students are listed below over the given time span. Which student's grade increased at a higher rate?
Year | Bobby | Fred |
2009 | 75 | 69 |
2012 | 89 | 84 |
A. They increased at the same rate. ![]() |
||
B. More information is needed to solve this. ![]() |
||
C. Bobby ![]() |
||
D. Fred ![]() |
A. y = 2x + 3 ![]() |
||
B. y = 0.66x + 6 ![]() |
||
C. y = -6x+ 1.5 ![]() |
||
D. y = -1.5x + 6 ![]() |
A. 3 - 30w ![]() |
||
B. 30 - 3w ![]() |
||
C. 3 = 30w ![]() |
||
D. 3w - 30 ![]() |
A. (1.5, 2.5) ![]() |
||
B. (0.5, 3.5) ![]() |
||
C. (3, 7) ![]() |
||
D. (1.7, 2.1) ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. Vertical intercept: x=2,-1, or 4; horizontal intercept: y=8 ![]() |
||
B. Vertical intercept: y=0; horizontal intercept: x=2, or -1 ![]() |
||
C. Vertical intercept: y=8; horizontal intercept: x=2,-1, or 4 ![]() |
||
D. Vertical intercept: x=2, or -1; horizontal intercept: y=8 ![]() |
Determine the number of turning points for the following graph.
A. 1 ![]() |
||
B. 2 ![]() |
||
C. 3 ![]() |
||
D. 4 ![]() |
What can you conclude about the degree of the polynomal graphed below?
A. Even, degree of 2 ![]() |
||
B. Odd, degree of 3 ![]() |
||
C. Odd, degree of 5 or more ![]() |
||
D. Even, degree of 4 or more ![]() |
What can you conclude about the long run behavior of the polynomal graphed below?
A. As ![]() ![]() ![]() |
||
B. As ![]() ![]() ![]() |
||
C. As ![]() ![]() ![]() |
||
D. As ![]() ![]() ![]() |
A. x = -0.477 ![]() |
||
B. x = 10.477 ![]() |
||
C. x = 0.477, -10.477 ![]() |
||
D. x = -0.477, 10.477 ![]() |
A. Impossible to calculate ![]() |
||
B. After -1.001 seconds ![]() |
||
C. After 27.3 seconds ![]() |
||
D. After 1.001 seconds ![]() |
A. t = -0.325, 12.325 ![]() |
||
B. t = 0.325, -12.325 ![]() |
||
C. t = 0, 3 ![]() |
||
D. t = -1.325, 3.325 ![]() |
A. Impossible to calculate ![]() |
||
B. After 0.989 seconds ![]() |
||
C. After -0.989 seconds ![]() |
||
D. After 28.655 seconds ![]() |
Find the equation for the graph below (assume a scale of 1 unit).
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. Minimum: (0, -8); maximum: (-1, 0) ![]() |
||
B. Minimum: (-2, 0); maximum: (0.67, -9.48) ![]() |
||
C. Minimum: (0.67, -9.48); maximum: (-2, 0) ![]() |
||
D. Minimum: (0, 0); maximum: (-1, 1) ![]() |
A. x = -3, 3 each with multiplicity of 2 ![]() |
||
B. x = -3, -5 each with multiplicity of 1 ![]() |
||
C. x = -5, 3 each with multiplicity of 2 ![]() |
||
D. x = -3, -5, 3 each with multiplicity of 1 ![]() |
A. (-0.91, -6.47) and (-2, 0) ![]() |
||
B. (0.42, -0.57) and (2.55, 6.94) ![]() |
||
C. (-0.91, -6.47) and (2.55, 6.94) ![]() |
||
D. (0.42, -0.57) and (-2, 0) ![]() |
A. x = 1, -3 ![]() |
||
B. x = -1, 3 ![]() |
||
C. x = 0, -3 ![]() |
||
D. x = 2, 3 ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. w(t)=4t+1 ![]() |
||
B. w(t)=75+7t ![]() |
||
C. w(t)=75t+7 ![]() |
||
D. w(t)=79t+8 ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
Sketch a graph of the following equation and determine which graph below represents this function.
Graph A
Graph B
Graph C
Graph D
A. Graph A ![]() |
||
B. Graph B ![]() |
||
C. Graph C ![]() |
||
D. Graph D ![]() |
A. 1 ![]() |
||
B. 2 ![]() |
||
C. 3 ![]() |
||
D. 4 ![]() |
A. 1 ![]() |
||
B. 2 ![]() |
||
C. 3 ![]() |
||
D. 4 ![]() |
Sketch a graph of the following equation and determine which graph below represents this function.
Graph A
Graph B
Graph C
Graph D
A. Graph A ![]() |
||
B. Graph B ![]() |
||
C. Graph C ![]() |
||
D. Graph D ![]() |
A jewelry store has a stock of 100 necklaces. It is selling 5% of its necklaces each week (w). Write an equation demonstrating this decay.
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A jewelry store has a stock of 100 necklaces. It is selling 5% of its necklaces each week (w). Approximately how many necklaces will it have left after 12 weeks?
A. 85 ![]() |
||
B. None ![]() |
||
C. 2 ![]() |
||
D. 54 ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
Determine the equation for the blue function in the graph below.
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
Sketch a graph of the function and determine which function in the graph below represents it (assume a scale of 1).
A. Green ![]() |
||
B. Red ![]() |
||
C. Purple ![]() |
||
D. None of these ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. $5,190.70 ![]() |
||
B. $414,517.29 ![]() |
||
C. $5,229.70 ![]() |
||
D. $7,834.96 ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
Use the exponent property for logs to rewrite
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. x = -8.53 ![]() |
||
B. x = -0.117 ![]() |
||
C. x = -23.82 ![]() |
||
D. x = -15.29 ![]() |
A. 5% per 6 months ![]() |
||
B. .05% per month ![]() |
||
C. .05% per 6 months ![]() |
||
D. 5% per month ![]() |
Use the sum and difference properties of logs to write as a single logarithm.
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. 2 ![]() |
||
B. 54 ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. As ![]() ![]() ![]() |
||
B. As ![]() ![]() ![]() |
||
C. As ![]() ![]() ![]() |
||
D. As ![]() ![]() ![]() |
A. 1 day ![]() |
||
B. 2 days ![]() |
||
C. 3 days ![]() |
||
D. 4 days ![]() |
A. 96.6% ![]() |
||
B. 3.4% ![]() |
||
C. 50% ![]() |
||
D. 0.034% ![]() |
A. Less than a month ![]() |
||
B. 6 months ![]() |
||
C. 7.3 months ![]() |
||
D. 1.1 months ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
The table below represents the dollars (in millions) of Brand X candies sold per year. Use technology to fit an exponential function to this data using linearization. Then determine the percentage increase per year.
Year | 1996 | 1998 | 2000 | 2002 | 2004 | 2006 | 2008 | ||
$$ | 1.2 | 1.5 | 1.6 | 1.9 | 2.1 | 2.4 | 2.5 |
A. 6.3% ![]() |
||
B. 2.6% ![]() |
||
C. 52.7% ![]() |
||
D. 5.3% ![]() |
Complete the table below for the function on a semilog graph with a logarithmic scale on the vertical axis.
x | log (f(x)) |
-2 | |
-1 | |
0 | |
1 | |
2 |
A. 1, 2, 4, 16, 32 ![]() |
||
B. -2, -1, 0, 1, 2 ![]() |
||
C. -0.6, -0.3, 0, 0.3, 0.6 ![]() |
||
D. 0, 0.3, 0.6, 1.2, 1.5 ![]() |
Determine which function below represents
A. Red ![]() |
||
B. Green ![]() |
||
C. Blue ![]() |
||
D. Cyan ![]() |