a. 10 mph ![]() |
||
b. 30 mph ![]() |
||
c. 40 mph ![]() |
||
d. 50 mph ![]() |
a. 53° ![]() |
||
b. 45° ![]() |
||
c. 90° ![]() |
||
d. None of the above ![]() |
a. Non-zero, equal ![]() |
||
b. Orthogonal, parallel ![]() |
||
c. Parallel, orthogonal ![]() |
||
d. Zero, orthogonal ![]() |
a. length, magnitude ![]() |
||
b. direction, magnitude ![]() |
||
c. length, direction ![]() |
||
d. magnitude, length ![]() |
a. <-2,2> ![]() |
||
b. <2,-3,1> ![]() |
||
c. <-2,3,-1> ![]() |
||
d. <2,3,-1> ![]() |
a. L'(t) = v(t) ⋅ v(t) + r(t) × v(t) ![]() |
||
b. L'(t) = v(t) ⋅ v(t) ![]() |
||
c. L'(t) = r(t) × a(t) ![]() |
||
d. L'(t) = v(t) ⋅ v(t) + r(t) × a(t) ![]() |
a. √2 ![]() |
||
b. 2√5 ![]() |
||
c. 5π√2 ![]() |
||
d. 2π√5 ![]() |
a. equal ![]() |
||
b. orthogonal ![]() |
||
c. anti-derivative ![]() |
||
d. parallel ![]() |
a. distance ![]() |
||
b. magnitude ![]() |
||
c. derivative ![]() |
||
d. anti-derivative ![]() |
a. 0 ![]() |
||
b. –![]() ![]() |
||
c. ![]() ![]() |
||
d. None of the above ![]() |
a. <6t, 2, 2> ![]() |
||
b. <3t, 2t, 2t> ![]() |
||
c. <6t, 0, 0> ![]() |
||
d. None of the above ![]() |
a. 0° ![]() |
||
b. 90° ![]() |
||
c. 180° ![]() |
||
d. 45° ![]() |
a. 3t ![]() |
||
b. 9t ![]() |
||
c. 3 ![]() |
||
d. All of the above ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 0 ![]() |
||
b. 1 ![]() |
||
c. k ![]() |
||
d. None of the above ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. <3t2,1,2t> ![]() |
||
b. <3t, 0, 2> ![]() |
||
c. <3t2,t,t> ![]() |
||
d. <3t2,2t,2t> ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. None of the above ![]() |
a. 10 ft/s ![]() |
||
b. 44.72 ft/s2 ![]() |
||
c. 44.72 ft/s ![]() |
||
d. 10.25 ft/s ![]() |
a. 0 ![]() |
||
b. The reciprocal of its radius ![]() |
||
c. Its radius ![]() |
||
d. None of the above ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. <8, 8> ![]() |
||
b. <8, 12> ![]() |
||
c. <12, 8> ![]() |
||
d. <2, 2> ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. Continuous for x≠-y ![]() |
||
b. Continuous for x≠y ![]() |
||
c. Not a continuous function ![]() |
||
d. None of the above ![]() |
a. 10t9-8cos(t)sin(t) ![]() |
||
b. 10t4-4ysin(t) ![]() |
||
c. 2t5+4cos(t) ![]() |
||
d. None of the above ![]() |
a. ¾ ![]() |
||
b. -¾ ![]() |
||
c. -1 ![]() |
||
d. Undefined ![]() |
a. defined ![]() |
||
b. undefined ![]() |
||
c. continuous ![]() |
||
d. differentiable ![]() |
a. not connected ![]() |
||
b. undefined ![]() |
||
c. dom(f)={(x,y)|x≠4} ![]() |
||
d. connected ![]() |
a. closed and unbounded ![]() |
||
b. connected and bounded ![]() |
||
c. open, connected, and unbounded ![]() |
||
d. closed, connected, and bounded ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. fx(x,y) = cos(x) ![]() |
||
b. fx(x,y) = -cos(x) ![]() |
||
c. fx(x,y) = y cos(x) ![]() |
||
d. fx(x,y) = y cos(-x) ![]() |
a. fxx(x,y) = 6x+y5 ![]() |
||
b. fxx(x,y) = 6+10y3 | ||
c. fxx(x,y) = 12x+2y5 | ||
d. None of the above ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. fyx(x,y) = cos(y) ![]() |
||
b. fyx(x,y) = xcos(y) ![]() |
||
c. fyx(x,y) = -cos(y) ![]() |
||
d. fyx(x,y) = -xcos(y) ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. f/g ![]() |
||
b. f + g ![]() |
||
c. f – g ![]() |
||
d. All of the above ![]() |
a. cA(x,t), for a constant c ![]() |
||
b. cB(x,t), for a constant c ![]() |
||
c. αA(x,t)+ βB(x,t), for constants α,β ![]() |
||
d. All of the above ![]() |
a. The rate of change of the unit vector u=<a,b> in a given direction ![]() |
||
b. The rate of change of ‖f(x,y)‖ in the direction of a vector ![]() |
||
c. The rate of change of f(x,y) in the direction of the unit vector u=<a,b> ![]() |
||
d. None of the above ![]() |
a. Maximum value of 0 occurs at (0,0). ![]() |
||
b. Maximum value of 2 occurs at ±![]() ![]() |
||
c. Maximum value of 2 occurs at ![]() ![]() ![]() |
||
d. None of the above ![]() |
a. Constraints on the solutions at different points in space ![]() |
||
b. Constraints indicating that the rate of change of a function must be along a normal vector ![]() |
||
c. Conditions that hold for surfaces without boundaries ![]() |
||
d. None of the above ![]() |
a. The rates of change of the functions as the variables change ![]() |
||
b. The change in the magnitude of the function ![]() |
||
c. The points at which the value of the function is zero ![]() |
||
d. None of the above ![]() |
a. Does not exist ![]() |
||
b. 0 ![]() |
||
c. -1 ![]() |
||
d. x = 0 ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. Connected ![]() |
||
b. ℝ ![]() |
||
c. ℝ - {0, 0} ![]() |
||
d. None of the above ![]() |
a. y(t)= A cos(kt)+ B sin(kt) ![]() |
||
b. y(t)=Aekt ![]() |
||
c. y(t)=A cosh(kt)+ B sinh(kt) ![]() |
||
d. None of the above ![]() |
a. fxx = fyy ![]() |
||
b. fxy = fyx ![]() |
||
c. fxy = -fyx ![]() |
||
d. All of the above ![]() |
a. fxx = fyy ![]() |
||
b. fxy = fyx ![]() |
||
c. fxy = -fyx ![]() |
||
d. All of the above ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 2x + 2y + 2z ![]() |
||
b. 2x + yz ![]() |
||
c. xyz ![]() |
||
d. 2x ![]() |
a. tangent vector field, conservative vector field ![]() |
||
b. conservative vector field, potential ![]() |
||
c. potential, conservative vector field ![]() |
||
d. conservative vector field, tangent vector field ![]() |
a. 0 ![]() |
||
b. 1 ![]() |
||
c. π ![]() |
||
d. None of the above ![]() |
a. (-5)/4 ![]() |
||
b. 4/5 ![]() |
||
c. 0 ![]() |
||
d. -1 ![]() |
a. 1/2π ![]() |
||
b. (-1)/2π ![]() |
||
c. 1 ![]() |
||
d. 0 ![]() |
a. 27 ![]() |
||
b. 54 ![]() |
||
c. 50 ![]() |
||
d. 81 ![]() |
a. conservative ![]() |
||
b. constant ![]() |
||
c. not a vector field ![]() |
||
d. undefined ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. U= <-2x,-2y> ![]() |
||
b. U= <2x,2y> ![]() |
||
c. U= <-x,-y> ![]() |
||
d. U= <x+y,x-y> ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 160 ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. 64 ![]() |
a. The function is not bounded on [0,1]x[0,1]. ![]() |
||
b. The function is bounded on [0,1]x[0,1]. ![]() |
||
c. The function is continuous on all points. ![]() |
||
d. The function is a constant. ![]() |
a. ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() |
||
c. ![]() ![]() |
||
d. All of the above ![]() |
a. k ![]() |
||
b. k((b - a) +(d - c)) ![]() |
||
c. k(b - a)(d - c) ![]() |
||
d. 0 ![]() |
a. -1 ![]() |
||
b. 0 ![]() |
||
c. 1 ![]() |
||
d. 2 ![]() |
a. 2π ![]() |
||
b. 8π ![]() |
||
c. 4π ![]() |
||
d. π ![]() |
a. 2 ![]() |
||
b. 9 ![]() |
||
c. 10 ![]() |
||
d. 15 ![]() |
a. ![]() ![]() |
||
b. 2![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 1 kg ![]() |
||
b. 2 kg ![]() |
||
c. 3 kg ![]() |
||
d. 4 kg ![]() |
a. Undefined ![]() |
||
b. Type II ![]() |
||
c. Type I ![]() |
||
d. None of the above ![]() |
a. Cube ![]() |
||
b. Sphere ![]() |
||
c. Ellipse ![]() |
||
d. None of the above ![]() |
a. ![]() ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() ![]() |
||
d. None of the above ![]() |
a. ![]() ![]() ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() ![]() ![]() |
||
d. All of the above ![]() |
a. If f(x,y,z) has a continuous second or partial derivative, then curl(∇f)= 0. ![]() |
||
b. If ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() |
||
d. ![]() ![]() |
a. 60 ![]() |
||
b. 64 ![]() |
||
c. 32 ![]() |
||
d. 16 ![]() |
a. 4π ![]() |
||
b. 8π ![]() |
||
c. 16π ![]() |
||
d. 64π ![]() |
a. π/2 R4 ![]() |
||
b. π/3 R3 ![]() |
||
c. 3π/4 R4 ![]() |
||
d. 3π/2 R4 ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 0 ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. None of the above ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. πR2 ![]() |
||
b. 4πR2 ![]() |
||
c. 4R2 ![]() |
||
d. 4π ![]() |
a. 2√3 ![]() |
||
b. √3 ![]() |
||
c. 4√3 ![]() |
||
d. 2 ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. 0 ![]() |
||
d. 1 ![]() |
a. 16 ![]() |
||
b. 32 ![]() |
||
c. 48 ![]() |
||
d. 64 ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. 1 ![]() |
a. F'(x,y,z) = G'(x,y,z). ![]() |
||
b. div(F(x,y,z)+ G(x,y,z)) = F'(x,y,z) + G'(x,y,z). ![]() |
||
c. div(F(x,y,z)+ G(x,y,z))= div(F(x,y,z))+ div(G(x,y,z)). ![]() |
||
d. All of the above ![]() |
a. ![]() ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() ![]() |
||
d. ![]() ![]() ![]() ![]() |
a. ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() |
||
d. ![]() ![]() ![]() |
a. ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() |
||
d. ![]() ![]() ![]() |
a. The rate of change in direction ![]() |
||
b. Surface area of S ![]() |
||
c. The volume of fluid passing through S ![]() |
||
d. None of the above ![]() |
a. The flux of a vector field to the flow of the vector field inside the surface ![]() |
||
b. The behavior of the vector field on the surface to its curvature ![]() |
||
c. The flux of a vector field through a surface to the behavior of the vector field inside the surface ![]() |
||
d. None of the above ![]() |
a. The surface S is changed to any surface as long as the boundary of S is still the curve C. ![]() |
||
b. The surface S is changed to any surface as long as the boundary of S still intersects the curve C. ![]() |
||
c. The surface S is changed to a sphere. ![]() |
||
d. None of the above ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. -2 ![]() |
||
b. 2 ![]() |
||
c. 0 ![]() |
||
d. None of the above ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 3π ![]() |
||
b. 4π ![]() |
||
c. 8π ![]() |
||
d. 16π ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 2 ![]() |
||
b. 4 ![]() |
||
c. 1 ![]() |
||
d. 6 ![]() |