|
a. 10 mph |
||
|
b. 30 mph |
||
|
c. 40 mph |
||
|
d. 50 mph |
|
a. 53° |
||
|
b. 45° |
||
|
c. 90° |
||
|
d. None of the above |
|
a. Non-zero, equal |
||
|
b. Orthogonal, parallel |
||
|
c. Parallel, orthogonal |
||
|
d. Zero, orthogonal |
|
a. length, magnitude |
||
|
b. direction, magnitude |
||
|
c. length, direction |
||
|
d. magnitude, length |
|
a. <-2,2> |
||
|
b. <2,-3,1> |
||
|
c. <-2,3,-1> |
||
|
d. <2,3,-1> |
|
a. L'(t) = v(t) ⋅ v(t) + r(t) × v(t) |
||
|
b. L'(t) = v(t) ⋅ v(t) |
||
|
c. L'(t) = r(t) × a(t) |
||
|
d. L'(t) = v(t) ⋅ v(t) + r(t) × a(t) |
|
a. √2 |
||
|
b. 2√5 |
||
|
c. 5π√2 |
||
|
d. 2π√5 |
|
a. equal |
||
|
b. orthogonal |
||
|
c. anti-derivative |
||
|
d. parallel |
|
a. distance |
||
|
b. magnitude |
||
|
c. derivative |
||
|
d. anti-derivative |
|
a. 0 |
||
|
b. – |
||
|
c. |
||
|
d. None of the above |
|
a. <6t, 2, 2> |
||
|
b. <3t, 2t, 2t> |
||
|
c. <6t, 0, 0> |
||
|
d. None of the above |
|
a. 0° |
||
|
b. 90° |
||
|
c. 180° |
||
|
d. 45° |
|
a. 3t |
||
|
b. 9t |
||
|
c. 3 |
||
|
d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. 0 |
||
|
b. 1 |
||
|
c. k |
||
|
d. None of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. <3t2,1,2t> |
||
|
b. <3t, 0, 2> |
||
|
c. <3t2,t,t> |
||
|
d. <3t2,2t,2t> |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. None of the above |
|
a. 10 ft/s |
||
|
b. 44.72 ft/s2 |
||
|
c. 44.72 ft/s |
||
|
d. 10.25 ft/s |
|
a. 0 |
||
|
b. The reciprocal of its radius |
||
|
c. Its radius |
||
|
d. None of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. <8, 8> |
||
|
b. <8, 12> |
||
|
c. <12, 8> |
||
|
d. <2, 2> |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. Continuous for x≠-y |
||
|
b. Continuous for x≠y |
||
|
c. Not a continuous function |
||
|
d. None of the above |
|
a. 10t9-8cos(t)sin(t) |
||
|
b. 10t4-4ysin(t) |
||
|
c. 2t5+4cos(t) |
||
|
d. None of the above |
|
a. ¾ |
||
|
b. -¾ |
||
|
c. -1 |
||
|
d. Undefined |
|
a. defined |
||
|
b. undefined |
||
|
c. continuous |
||
|
d. differentiable |
|
a. not connected |
||
|
b. undefined |
||
|
c. dom(f)={(x,y)|x≠4} |
||
|
d. connected |
|
a. closed and unbounded |
||
|
b. connected and bounded |
||
|
c. open, connected, and unbounded |
||
|
d. closed, connected, and bounded |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. fx(x,y) = cos(x) |
||
|
b. fx(x,y) = -cos(x) |
||
|
c. fx(x,y) = y cos(x) |
||
|
d. fx(x,y) = y cos(-x) |
|
a. fxx(x,y) = 6x+y5 |
||
| b. fxx(x,y) = 6+10y3 | ||
| c. fxx(x,y) = 12x+2y5 | ||
|
d. None of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. fyx(x,y) = cos(y) |
||
|
b. fyx(x,y) = xcos(y) |
||
|
c. fyx(x,y) = -cos(y) |
||
|
d. fyx(x,y) = -xcos(y) |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. f/g |
||
|
b. f + g |
||
|
c. f – g |
||
|
d. All of the above |
|
a. cA(x,t), for a constant c |
||
|
b. cB(x,t), for a constant c |
||
|
c. αA(x,t)+ βB(x,t), for constants α,β |
||
|
d. All of the above |
|
a. The rate of change of the unit vector u=<a,b> in a given direction |
||
|
b. The rate of change of ‖f(x,y)‖ in the direction of a vector |
||
|
c. The rate of change of f(x,y) in the direction of the unit vector u=<a,b> |
||
|
d. None of the above |
|
a. Maximum value of 0 occurs at (0,0). |
||
|
b. Maximum value of 2 occurs at ± |
||
|
c. Maximum value of 2 occurs at |
||
|
d. None of the above |
|
a. Constraints on the solutions at different points in space |
||
|
b. Constraints indicating that the rate of change of a function must be along a normal vector |
||
|
c. Conditions that hold for surfaces without boundaries |
||
|
d. None of the above |
|
a. The rates of change of the functions as the variables change |
||
|
b. The change in the magnitude of the function |
||
|
c. The points at which the value of the function is zero |
||
|
d. None of the above |
|
a. Does not exist |
||
|
b. 0 |
||
|
c. -1 |
||
|
d. x = 0 |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. Connected |
||
|
b. ℝ |
||
|
c. ℝ - {0, 0} |
||
|
d. None of the above |
|
a. y(t)= A cos(kt)+ B sin(kt) |
||
|
b. y(t)=Aekt |
||
|
c. y(t)=A cosh(kt)+ B sinh(kt) |
||
|
d. None of the above |
|
a. fxx = fyy |
||
|
b. fxy = fyx |
||
|
c. fxy = -fyx |
||
|
d. All of the above |
|
a. fxx = fyy |
||
|
b. fxy = fyx |
||
|
c. fxy = -fyx |
||
|
d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. 2x + 2y + 2z |
||
|
b. 2x + yz |
||
|
c. xyz |
||
|
d. 2x |
|
a. tangent vector field, conservative vector field |
||
|
b. conservative vector field, potential |
||
|
c. potential, conservative vector field |
||
|
d. conservative vector field, tangent vector field |
|
a. 0 |
||
|
b. 1 |
||
|
c. π |
||
|
d. None of the above |
|
a. (-5)/4 |
||
|
b. 4/5 |
||
|
c. 0 |
||
|
d. -1 |
|
a. 1/2π |
||
|
b. (-1)/2π |
||
|
c. 1 |
||
|
d. 0 |
|
a. 27 |
||
|
b. 54 |
||
|
c. 50 |
||
|
d. 81 |
|
a. conservative |
||
|
b. constant |
||
|
c. not a vector field |
||
|
d. undefined |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. U= <-2x,-2y> |
||
|
b. U= <2x,2y> |
||
|
c. U= <-x,-y> |
||
|
d. U= <x+y,x-y> |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. 160 |
||
|
b. |
||
|
c. |
||
|
d. 64 |
|
a. The function is not bounded on [0,1]x[0,1]. |
||
|
b. The function is bounded on [0,1]x[0,1]. |
||
|
c. The function is continuous on all points. |
||
|
d. The function is a constant. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. All of the above |
|
a. k |
||
|
b. k((b - a) +(d - c)) |
||
|
c. k(b - a)(d - c) |
||
|
d. 0 |
|
a. -1 |
||
|
b. 0 |
||
|
c. 1 |
||
|
d. 2 |
|
a. 2π |
||
|
b. 8π |
||
|
c. 4π |
||
|
d. π |
|
a. 2 |
||
|
b. 9 |
||
|
c. 10 |
||
|
d. 15 |
|
a. |
||
|
b. 2 |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. 1 kg |
||
|
b. 2 kg |
||
|
c. 3 kg |
||
|
d. 4 kg |
|
a. Undefined |
||
|
b. Type II |
||
|
c. Type I |
||
|
d. None of the above |
|
a. Cube |
||
|
b. Sphere |
||
|
c. Ellipse |
||
|
d. None of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. None of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. All of the above |
|
a. If f(x,y,z) has a continuous second or partial derivative, then curl(∇f)= 0. |
||
|
b. If |
||
|
c. If |
||
|
d. |
|
a. 60 |
||
|
b. 64 |
||
|
c. 32 |
||
|
d. 16 |
|
a. 4π |
||
|
b. 8π |
||
|
c. 16π |
||
|
d. 64π |
|
a. π/2 R4 |
||
|
b. π/3 R3 |
||
|
c. 3π/4 R4 |
||
|
d. 3π/2 R4 |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. 0 |
||
|
b. |
||
|
c. |
||
|
d. None of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. πR2 |
||
|
b. 4πR2 |
||
|
c. 4R2 |
||
|
d. 4π |
|
a. 2√3 |
||
|
b. √3 |
||
|
c. 4√3 |
||
|
d. 2 |
|
a. |
||
|
b. |
||
|
c. 0 |
||
|
d. 1 |
|
a. 16 |
||
|
b. 32 |
||
|
c. 48 |
||
|
d. 64 |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. 1 |
|
a. F'(x,y,z) = G'(x,y,z). |
||
|
b. div(F(x,y,z)+ G(x,y,z)) = F'(x,y,z) + G'(x,y,z). |
||
|
c. div(F(x,y,z)+ G(x,y,z))= div(F(x,y,z))+ div(G(x,y,z)). |
||
|
d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. The rate of change in direction |
||
|
b. Surface area of S |
||
|
c. The volume of fluid passing through S |
||
|
d. None of the above |
|
a. The flux of a vector field to the flow of the vector field inside the surface |
||
|
b. The behavior of the vector field on the surface to its curvature |
||
|
c. The flux of a vector field through a surface to the behavior of the vector field inside the surface |
||
|
d. None of the above |
|
a. The surface S is changed to any surface as long as the boundary of S is still the curve C. |
||
|
b. The surface S is changed to any surface as long as the boundary of S still intersects the curve C. |
||
|
c. The surface S is changed to a sphere. |
||
|
d. None of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. -2 |
||
|
b. 2 |
||
|
c. 0 |
||
|
d. None of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. 3π |
||
|
b. 4π |
||
|
c. 8π |
||
|
d. 16π |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. 2 |
||
|
b. 4 |
||
|
c. 1 |
||
|
d. 6 |