a. 10 mph | ||
b. 30 mph | ||
c. 40 mph | ||
d. 50 mph |
a. 53° | ||
b. 45° | ||
c. 90° | ||
d. None of the above |
a. Non-zero, equal | ||
b. Orthogonal, parallel | ||
c. Parallel, orthogonal | ||
d. Zero, orthogonal |
a. length, magnitude | ||
b. direction, magnitude | ||
c. length, direction | ||
d. magnitude, length |
a. <-2,2> | ||
b. <2,-3,1> | ||
c. <-2,3,-1> | ||
d. <2,3,-1> |
a. L'(t) = v(t) ⋅ v(t) + r(t) × v(t) | ||
b. L'(t) = v(t) ⋅ v(t) | ||
c. L'(t) = r(t) × a(t) | ||
d. L'(t) = v(t) ⋅ v(t) + r(t) × a(t) |
a. √2 | ||
b. 2√5 | ||
c. 5π√2 | ||
d. 2π√5 |
a. equal | ||
b. orthogonal | ||
c. anti-derivative | ||
d. parallel |
a. distance | ||
b. magnitude | ||
c. derivative | ||
d. anti-derivative |
a. 0 | ||
b. - | ||
c. | ||
d. None of the above |
a. <6t, 2, 2> | ||
b. <3t, 2t, 2t> | ||
c. <6t, 0, 0> | ||
d. None of the above |
a. 0° | ||
b. 90° | ||
c. 180° | ||
d. 45° |
a. 3t | ||
b. 9t | ||
c. 3 | ||
d. All of the above |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. 0 | ||
b. 1 | ||
c. k | ||
d. None of the above |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. <3t2,1,2t> | ||
b. <3t, 0, 2> | ||
c. <3t2,t,t> | ||
d. <3t2,2t,2t> |
a. | ||
b. | ||
c. | ||
d. None of the above |
a. 10 ft/s | ||
b. 44.72 ft/s2 | ||
c. 44.72 ft/s | ||
d. 10.25 ft/s |
a. 0 | ||
b. The reciprocal of its radius | ||
c. Its radius | ||
d. None of the above |
a. | ||
b. | ||
c. | ||
d. |
a. <8, 8> | ||
b. <8, 12> | ||
c. <12, 8> | ||
d. <2, 2> |
a. | ||
b. | ||
c. | ||
d. |
a. Continuous for x≠-y | ||
b. Continuous for x≠y | ||
c. Not a continuous function | ||
d. None of the above |
a. 10t9-8cos(t)sin(t) | ||
b. 10t4-4ysin(t) | ||
c. 2t5+4cos(t) | ||
d. None of the above |
a. ¾ | ||
b. -¾ | ||
c. -1 | ||
d. Undefined |
a. defined | ||
b. undefined | ||
c. continuous | ||
d. differentiable |
a. not connected | ||
b. undefined | ||
c. dom(f)={(x,y)|x≠4} | ||
d. connected |
a. closed and unbounded | ||
b. connected and bounded | ||
c. open, connected, and unbounded | ||
d. closed, connected, and bounded |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. fx(x,y) = cos(x) | ||
b. fx(x,y) = -cos(x) | ||
c. fx(x,y) = y cos(x) | ||
d. fx(x,y) = y cos(-x) |
a. fxx(x,y) = 6x+y5 | ||
b. fxx(x,y) = 6+10y3 | ||
c. fxx(x,y) = 12x+2y5 | ||
d. None of the above |
a. | ||
b. | ||
c. | ||
d. |
a. fyx(x,y) = cos(y) | ||
b. fyx(x,y) = xcos(y) | ||
c. fyx(x,y) = -cos(y) | ||
d. fyx(x,y) = -xcos(y) |
a. | ||
b. | ||
c. | ||
d. |
a. f/g | ||
b. f + g | ||
c. f - g | ||
d. All of the above |
a. cA(x,t), for a constant c | ||
b. cB(x,t), for a constant c | ||
c. αA(x,t)+ βB(x,t), for constants α,β | ||
d. All of the above |
a. The rate of change of the unit vector u=<a,b> in a given direction | ||
b. The rate of change of ‖f(x,y)‖ in the direction of a vector | ||
c. The rate of change of f(x,y) in the direction of the unit vector u=<a,b> | ||
d. None of the above |
a. Maximum value of 0 occurs at (0,0). | ||
b. Maximum value of 2 occurs at ±. | ||
c. Maximum value of 2 occurs at and | ||
d. None of the above |
a. Constraints on the solutions at different points in space | ||
b. Constraints indicating that the rate of change of a function must be along a normal vector | ||
c. Conditions that hold for surfaces without boundaries | ||
d. None of the above |
a. The rates of change of the functions as the variables change | ||
b. The change in the magnitude of the function | ||
c. The points at which the value of the function is zero | ||
d. None of the above |
a. Does not exist | ||
b. 0 | ||
c. -1 | ||
d. x = 0 |
a. | ||
b. | ||
c. | ||
d. |
a. Connected | ||
b. ℝ | ||
c. ℝ - {0, 0} | ||
d. None of the above |
a. y(t)= A cos(kt)+ B sin(kt) | ||
b. y(t)=Aekt | ||
c. y(t)=A cosh(kt)+ B sinh(kt) | ||
d. None of the above |
a. fxx = fyy | ||
b. fxy = fyx | ||
c. fxy = -fyx | ||
d. All of the above |
a. fxx = fyy | ||
b. fxy = fyx | ||
c. fxy = -fyx | ||
d. All of the above |
a. | ||
b. | ||
c. | ||
d. |
a. 2x + 2y + 2z | ||
b. 2x + yz | ||
c. xyz | ||
d. 2x |
a. tangent vector field, conservative vector field | ||
b. conservative vector field, potential | ||
c. potential, conservative vector field | ||
d. conservative vector field, tangent vector field |
a. 0 | ||
b. 1 | ||
c. π | ||
d. None of the above |
a. (-5)/4 | ||
b. 4/5 | ||
c. 0 | ||
d. -1 |
a. 1/2π | ||
b. (-1)/2π | ||
c. 1 | ||
d. 0 |
a. 27 | ||
b. 54 | ||
c. 50 | ||
d. 81 |
a. conservative | ||
b. constant | ||
c. not a vector field | ||
d. undefined |
a. | ||
b. | ||
c. | ||
d. |
a. U= <-2x,-2y> | ||
b. U= <2x,2y> | ||
c. U= <-x,-y> | ||
d. U= <x+y,x-y> |
a. | ||
b. | ||
c. | ||
d. |
a. 160 | ||
b. | ||
c. | ||
d. 64 |
a. The function is not bounded on [0,1]x[0,1]. | ||
b. The function is bounded on [0,1]x[0,1]. | ||
c. The function is continuous on all points. | ||
d. The function is a constant. |
a. | ||
b. | ||
c. | ||
d. All of the above |
a. k | ||
b. k((b - a) +(d - c)) | ||
c. k(b - a)(d - c) | ||
d. 0 |
a. -1 | ||
b. 0 | ||
c. 1 | ||
d. 2 |
a. 2π | ||
b. 8π | ||
c. 4π | ||
d. π |
a. 2 | ||
b. 9 | ||
c. 10 | ||
d. 15 |
a. | ||
b. 2 | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. 1 kg | ||
b. 2 kg | ||
c. 3 kg | ||
d. 4 kg |
a. Undefined | ||
b. Type II | ||
c. Type I | ||
d. None of the above |
a. Cube | ||
b. Sphere | ||
c. Ellipse | ||
d. None of the above |
a. =dy dx$$ | ||
b. =dydy$$ | ||
c. =dxdx$$ | ||
d. None of the above |
a. = dx dy$$ | ||
b. = dx dy$$ | ||
c. = dy dx$$ | ||
d. All of the above |
a. If f(x,y,z) has a continuous second or partial derivative, then curl(∇f)= 0. | ||
b. If is a conservative vector field, then curl. | ||
c. If is a conservative vector field, then . | ||
d. |
a. 60 | ||
b. 64 | ||
c. 32 | ||
d. 16 |
a. 4π | ||
b. 8π | ||
c. 16π | ||
d. 64π |
a. π/2 R4 | ||
b. π/3 R3 | ||
c. 3π/4 R4 | ||
d. 3π/2 R4 |
a. | ||
b. | ||
c. | ||
d. |
a. 0 | ||
b. | ||
c. | ||
d. None of the above |
a. | ||
b. | ||
c. | ||
d. |
a. πR2 | ||
b. 4πR2 | ||
c. 4R2 | ||
d. 4π |
a. 2√3 | ||
b. √3 | ||
c. 4√3 | ||
d. 2 |
a. | ||
b. | ||
c. 0 | ||
d. 1 |
a. 16 | ||
b. 32 | ||
c. 48 | ||
d. 64 |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. 1 |
a. F'(x,y,z) = G'(x,y,z). | ||
b. div(F(x,y,z)+ G(x,y,z)) = F'(x,y,z) + G'(x,y,z). | ||
c. div(F(x,y,z)+ G(x,y,z))= div(F(x,y,z))+ div(G(x,y,z)). | ||
d. All of the above |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. The rate of change in direction | ||
b. Surface area of S | ||
c. The volume of fluid passing through S | ||
d. None of the above |
a. The flux of a vector field to the flow of the vector field inside the surface | ||
b. The behavior of the vector field on the surface to its curvature | ||
c. The flux of a vector field through a surface to the behavior of the vector field inside the surface | ||
d. None of the above |
a. The surface S is changed to any surface as long as the boundary of S is still the curve C. | ||
b. The surface S is changed to any surface as long as the boundary of S still intersects the curve C. | ||
c. The surface S is changed to a sphere. | ||
d. None of the above |
a. | ||
b. | ||
c. | ||
d. |
a. -2 | ||
b. 2 | ||
c. 0 | ||
d. None of the above |
a. | ||
b. | ||
c. | ||
d. |
a. 3π | ||
b. 4π | ||
c. 8π | ||
d. 16π |
a. | ||
b. | ||
c. | ||
d. |
a. 2 | ||
b. 4 | ||
c. 1 | ||
d. 6 |