A. No ![]() |
||
B. In special cases ![]() |
||
C. Yes ![]() |
||
D. There is not enough information provided to determine this. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. matrices that commute. ![]() |
||
B. square matrices. ![]() |
||
C. Hermitian matrices. ![]() |
||
D. invertible matrices. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. For any ![]() ![]() ![]() ![]() |
||
B. If ![]() ![]() ![]() ![]() ![]() |
||
C. If ![]() ![]() ![]() ![]() |
||
D. All of these. ![]() |
A. Boundedness ![]() |
||
B. Finiteness ![]() |
||
C. Archimedean ![]() |
||
D. All of these ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. All of these ![]() |
A. one can be obtained from the other by a finite number of elementary row operations. ![]() |
||
B. one is the negative of the other. ![]() |
||
C. the product of the two matrices is zero. ![]() |
||
D. none of these. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. for every non-zero ![]() ![]() ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. Every finite field ![]() |
||
C. The field of rational functions with real coefficients ![]() |
||
D. None of these ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. Eight ![]() |
||
B. At least one ![]() |
||
C. Exactly two ![]() |
||
D. Infinitely many ![]() |
A. at least one; exactly five ![]() |
||
B. zero; exactly five ![]() |
||
C. exactly five; exactly five ![]() |
||
D. zero; exactly five ![]() |
A. 24 ![]() |
||
B. 10 ![]() |
||
C. 12 ![]() |
||
D. 42 ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
A. Negative ![]() |
||
B. Real ![]() |
||
C. Complex ![]() |
||
D. All of these ![]() |
A. -1, degenerate ![]() |
||
B. 1, -1 ![]() |
||
C. 1 degenerate ![]() |
||
D. 0, -1 ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
A. zero. ![]() |
||
B. non-negative. ![]() |
||
C. purely real. ![]() |
||
D. purely imaginary. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. None of these ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. smallest number such that some ![]() ![]() ![]() |
||
B. largest number such that some ![]() ![]() ![]() |
||
C. largest number such that some ![]() ![]() ![]() |
||
D. none of these. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. Every nonzero vector ![]() ![]() ![]() |
||
D. All of these. ![]() |
A. Every square matrix ![]() ![]() |
||
B. Every matrix ![]() ![]() |
||
C. Every matrix ![]() ![]() |
||
D. Every upper triangular matrix ![]() ![]() |
A. Composition of permutations is associative. ![]() |
||
B. Composition of permutations is commutative. ![]() |
||
C. There is an identity element for composition. ![]() |
||
D. There is an inverse element for composition. ![]() |
A. sum of the eigenvalues of ![]() ![]() ![]() |
||
B. product of the eigenvalues of ![]() ![]() ![]() |
||
C. sum of the eigenvalues of ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
A. Whether or not critical points of a function exist ![]() |
||
B. Where the derivative is zero for certain types of functions ![]() |
||
C. Whether a critical point of a function is a local minimum or a maximum ![]() |
||
D. All of these ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. all of these. ![]() |
A. ![]() ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() ![]() |
||
D. None of these. ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
A. It is a local maximum. ![]() |
||
B. It is a local minimum. ![]() |
||
C. It is a saddle point. ![]() |
||
D. It is zero. ![]() |
A. the minimal polynomial for ![]() ![]() ![]() |
||
B. the minimal polynomial for ![]() ![]() ![]() |
||
C. ![]() ![]() |
||
D. the only ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. Trivial subspaces ![]() |
||
B. Lines through the origin ![]() |
||
C. Both A and B ![]() |
||
D. None of these ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. Symmetric matrices ![]() |
||
B. Diagonal matrices ![]() |
||
C. Nonsingular matrices ![]() |
||
D. Upper triangular matrices ![]() |
A. collection ![]() |
||
B. span ![]() |
||
C. kernel ![]() |
||
D. transformation ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. All of these ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. None of these ![]() |
A. singular ![]() |
||
B. invertible ![]() |
||
C. continuous ![]() |
||
D. one-to-one ![]() |
A. zero map. ![]() |
||
B. identity map. ![]() |
||
C. vector space. ![]() |
||
D. surjective linear map. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. None of these ![]() |
A. any positive numbers. ![]() |
||
B. singular values of ![]() ![]() |
||
C. complex values. ![]() |
||
D. obtained from the dot product of ![]() ![]() ![]() |
A. ![]() ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() ![]() |
A. Every eigenvalue ![]() ![]() ![]() |
||
B. Every eigenvalue ![]() ![]() ![]() |
||
C. Every eigenvalue ![]() ![]() ![]() |
||
D. All of these. ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() |
A. it is not closed under addition. ![]() |
||
B. it is infinite. ![]() |
||
C. it is not closed under multiplication. ![]() |
||
D. it does not contain a zero vector. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. normal ![]() |
||
B. unitary ![]() |
||
C. symmetric ![]() |
||
D. square ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. None of these ![]() |
A. Normal operators are diagonal with respect to an orthonormal basis. ![]() |
||
B. Normal operators are diagonal with respect to a singular set of vectors. ![]() |
||
C. Nilpotent operators are diagonal with respect to an orthonormal basis. ![]() |
||
D. Semi-symmetric operators are diagonal with respect to any basis. ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. None of these ![]() |
A. Real ![]() |
||
B. Complex ![]() |
||
C. Degenerate ![]() |
||
D. All of these ![]() |
A. ![]() ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. None of these. ![]() |
A. Orthogonal ![]() |
||
B. Isometries ![]() |
||
C. Normal ![]() |
||
D. All of these ![]() |
A. Symmetric matrices ![]() |
||
B. Hermitian matrices ![]() |
||
C. Orthogonal matrices ![]() |
||
D. All of these ![]() |
A. Find a unitary matrix ![]() ![]() ![]() ![]() |
||
B. Find a unitary matrix ![]() ![]() ![]() ![]() |
||
C. Find a unitary matrix ![]() ![]() ![]() ![]() |
||
D. Find a diagonal matrix ![]() ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. All of these ![]() |
A. self-adjoint. ![]() |
||
B. nilpotent. ![]() |
||
C. orthogonal. ![]() |
||
D. diagonal. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. All of these ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. All of these ![]() |
A. Similar ![]() |
||
B. Equal ![]() |
||
C. Orthogonal ![]() |
||
D. None of these ![]() |
A. ![]() ![]() ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() |
||
D. All of these ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
A. Let ![]() ![]() ![]() ![]() ![]() ![]() |
||
B. Let ![]() ![]() ![]() ![]() ![]() ![]() |
||
C. Let ![]() ![]() ![]() ![]() ![]() ![]() |
||
D. None of these. ![]() |
A. a complete inner product space. ![]() |
||
B. an inner product space. ![]() |
||
C. a normed space. ![]() |
||
D. none of these. ![]() |
A. The angle between two vectors ![]() |
||
B. The length of a vector ![]() |
||
C. The direction of a vector ![]() |
||
D. All of these ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |