|
A. No |
||
|
B. In special cases |
||
|
C. Yes |
||
|
D. There is not enough information provided to determine this. |
and
, then which of the following cannot exist? |
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. matrices that commute. |
||
|
B. square matrices. |
||
|
C. Hermitian matrices. |
||
|
D. invertible matrices. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. For any |
||
|
B. If |
||
|
C. If |
||
|
D. All of these. |
|
A. Boundedness |
||
|
B. Finiteness |
||
|
C. Archimedean |
||
|
D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. All of these |
|
A. one can be obtained from the other by a finite number of elementary row operations. |
||
|
B. one is the negative of the other. |
||
|
C. the product of the two matrices is zero. |
||
|
D. none of these. |
|
A. |
||
|
B. |
||
C. |
||
D. |
|
A. for every non-zero |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. Every finite field |
||
|
C. The field of rational functions with real coefficients |
||
|
D. None of these |
and
in |
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. Eight |
||
|
B. At least one |
||
|
C. Exactly two |
||
|
D. Infinitely many |
|
A. at least one; exactly five |
||
|
B. zero; exactly five |
||
|
C. exactly five; exactly five |
||
|
D. zero; exactly five |
. |
A. 24 |
||
|
B. 10 |
||
|
C. 12 |
||
|
D. 42 |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. Negative |
||
|
B. Real |
||
|
C. Complex |
||
|
D. All of these |
|
A. -1, degenerate |
||
|
B. 1, -1 |
||
|
C. 1 degenerate |
||
|
D. 0, -1 |
, then compute
A. , |
||
B. , |
||
C. , |
||
D. , |
|
A. zero. |
||
|
B. non-negative. |
||
|
C. purely real. |
||
|
D. purely imaginary. |
.
A. |
||
B. |
||
C. |
||
|
D. None of these |
.
A. |
||
B. |
||
C. |
||
D. |
|
A. smallest number such that some |
||
|
B. largest number such that some |
||
|
C. largest number such that some |
||
|
D. none of these. |
|
A. |
||
|
B. |
||
|
C. Every nonzero vector |
||
|
D. All of these. |
|
A. Every square matrix |
||
|
B. Every matrix |
||
|
C. Every matrix |
||
|
D. Every upper triangular matrix |
|
A. Composition of permutations is associative. |
||
|
B. Composition of permutations is commutative. |
||
|
C. There is an identity element for composition. |
||
|
D. There is an inverse element for composition. |
|
A. sum of the eigenvalues of |
||
|
B. product of the eigenvalues of |
||
|
C. sum of the eigenvalues of |
||
|
D. |
|
A. Whether or not critical points of a function exist |
||
|
B. Where the derivative is zero for certain types of functions |
||
|
C. Whether a critical point of a function is a local minimum or a maximum |
||
|
D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. all of these. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. None of these. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
, where |
A. |
||
|
B. |
||
|
C. |
||
|
D. |
. Then what does the second derivative test tell us about this critical point? |
A. It is a local maximum. |
||
|
B. It is a local minimum. |
||
|
C. It is a saddle point. |
||
|
D. It is zero. |
|
A. the minimal polynomial for |
||
|
B. the minimal polynomial for |
||
|
C. |
||
|
D. the only |
. Determine the Jordan normal form for
A. |
||
B. |
||
C. |
||
D. |
|
A. Trivial subspaces |
||
|
B. Lines through the origin |
||
|
C. Both A and B |
||
|
D. None of these |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. Symmetric matrices |
||
|
B. Diagonal matrices |
||
|
C. Nonsingular matrices |
||
|
D. Upper triangular matrices |
|
A. collection |
||
|
B. span |
||
|
C. kernel |
||
|
D. transformation |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
A. |
||
B. |
||
C. |
||
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. None of these |
|
A. singular |
||
|
B. invertible |
||
|
C. continuous |
||
|
D. one-to-one |
|
A. zero map. |
||
|
B. identity map. |
||
|
C. vector space. |
||
|
D. surjective linear map. |
A. |
||
B. |
||
C. |
||
D. |
in the standard basis.
A. |
||
B. |
||
C. |
||
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
A. |
||
B. |
||
C. |
||
|
D. None of these |
|
A. any positive numbers. |
||
|
B. singular values of |
||
|
C. complex values. |
||
|
D. obtained from the dot product of |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. Every eigenvalue |
||
|
B. Every eigenvalue |
||
|
C. Every eigenvalue |
||
|
D. All of these. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. it is not closed under addition. |
||
|
B. it is infinite. |
||
|
C. it is not closed under multiplication. |
||
|
D. it does not contain a zero vector. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. normal |
||
|
B. unitary |
||
|
C. symmetric |
||
|
D. square |
A. , |
||
B. , |
||
C. , |
||
|
D. None of these |
|
A. Normal operators are diagonal with respect to an orthonormal basis. |
||
|
B. Normal operators are diagonal with respect to a singular set of vectors. |
||
|
C. Nilpotent operators are diagonal with respect to an orthonormal basis. |
||
|
D. Semi-symmetric operators are diagonal with respect to any basis. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. None of these |
|
A. Real |
||
|
B. Complex |
||
|
C. Degenerate |
||
|
D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. None of these. |
|
A. Orthogonal |
||
|
B. Isometries |
||
|
C. Normal |
||
|
D. All of these |
|
A. Symmetric matrices |
||
|
B. Hermitian matrices |
||
|
C. Orthogonal matrices |
||
|
D. All of these |
|
A. Find a unitary matrix |
||
|
B. Find a unitary matrix |
||
|
C. Find a unitary matrix |
||
|
D. Find a diagonal matrix |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. All of these |
|
A. self-adjoint. |
||
|
B. nilpotent. |
||
|
C. orthogonal. |
||
|
D. diagonal. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. All of these |
|
A. Similar |
||
|
B. Equal |
||
|
C. Orthogonal |
||
|
D. None of these |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. Let |
||
|
B. Let |
||
|
C. Let |
||
|
D. None of these. |
|
A. a complete inner product space. |
||
|
B. an inner product space. |
||
|
C. a normed space. |
||
|
D. none of these. |
|
A. The angle between two vectors |
||
|
B. The length of a vector |
||
|
C. The direction of a vector |
||
|
D. All of these |
and
. Applying the Gram-Schmidt process to
A. |
||
B. |
||
C. |
||
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
,
, and
. Which of the following is true?|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
A. |
||
B. |
||
C. |
||
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |