| A. No | ||
| B. In special cases | ||
| C. Yes | ||
| D. There is not enough information provided to determine this. |
and
, then which of the following cannot exist?
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
| A. matrices that commute. | ||
| B. square matrices. | ||
| C. Hermitian matrices. | ||
| D. invertible matrices. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. For any |
||
|
B. If |
||
|
C. If |
||
| D. All of these. |
| A. Boundedness | ||
| B. Finiteness | ||
| C. Archimedean | ||
| D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
| D. All of these |
| A. one can be obtained from the other by a finite number of elementary row operations. | ||
| B. one is the negative of the other. | ||
| C. the product of the two matrices is zero. | ||
| D. none of these. |
|
A. |
||
|
B. |
||
C.
|
||
D.
|
|
A. for every non-zero |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
| B. Every finite field | ||
| C. The field of rational functions with real coefficients | ||
| D. None of these |
and
in |
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
| A. Eight | ||
| B. At least one | ||
| C. Exactly two | ||
| D. Infinitely many |
| A. at least one; exactly five | ||
| B. zero; exactly five | ||
| C. exactly five; exactly five | ||
| D. zero; exactly five |
.
| A. 24 | ||
| B. 10 | ||
| C. 12 | ||
| D. 42 |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
| A. Negative | ||
| B. Real | ||
| C. Complex | ||
| D. All of these |
| A. -1, degenerate | ||
| B. 1, -1 | ||
| C. 1 degenerate | ||
| D. 0, -1 |
, then compute
A. ,
|
||
B. ,
|
||
C. ,
|
||
D. ,
|
| A. zero. | ||
| B. non-negative. | ||
| C. purely real. | ||
| D. purely imaginary. |
.
A.
|
||
B.
|
||
C.
|
||
| D. None of these |
.
A.
|
||
B.
|
||
C.
|
||
D.
|
|
A. smallest number such that some |
||
|
B. largest number such that some |
||
|
C. largest number such that some |
||
| D. none of these. |
|
A. |
||
|
B. |
||
|
C. Every nonzero vector |
||
| D. All of these. |
|
A. Every square matrix |
||
|
B. Every matrix |
||
|
C. Every matrix |
||
|
D. Every upper triangular matrix |
| A. Composition of permutations is associative. | ||
| B. Composition of permutations is commutative. | ||
| C. There is an identity element for composition. | ||
| D. There is an inverse element for composition. |
|
A. sum of the eigenvalues of |
||
|
B. product of the eigenvalues of |
||
|
C. sum of the eigenvalues of |
||
|
D. |
| A. Whether or not critical points of a function exist | ||
| B. Where the derivative is zero for certain types of functions | ||
| C. Whether a critical point of a function is a local minimum or a maximum | ||
| D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
| D. all of these. |
|
A. |
||
|
B. |
||
|
C. |
||
| D. None of these. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
, where |
A. |
||
|
B. |
||
|
C. |
||
|
D. |
. Then what does the
second derivative test tell us about this critical point?
| A. It is a local maximum. | ||
| B. It is a local minimum. | ||
| C. It is a saddle point. | ||
| D. It is zero. |
|
A. the minimal polynomial for |
||
|
B. the minimal polynomial for |
||
|
C. |
||
|
D. the only |
. Determine the Jordan normal form for
A.
|
||
B.
|
||
C.
|
||
D.
|
| A. Trivial subspaces | ||
| B. Lines through the origin | ||
| C. Both A and B | ||
| D. None of these |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
| A. Symmetric matrices | ||
| B. Diagonal matrices | ||
| C. Nonsingular matrices | ||
| D. Upper triangular matrices |
| A. collection | ||
| B. span | ||
| C. kernel | ||
| D. transformation |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
A.
|
||
B.
|
||
C.
|
||
D.
|
|
A. |
||
|
B. |
||
|
C. |
||
| D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
| D. None of these |
| A. singular | ||
| B. invertible | ||
| C. continuous | ||
| D. one-to-one |
| A. zero map. | ||
| B. identity map. | ||
| C. vector space. | ||
| D. surjective linear map. |
A.
|
||
B.
|
||
C.
|
||
D.
|
in the standard basis.
A.
|
||
B.
|
||
C.
|
||
D.
|
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
A.
|
||
B.
|
||
C.
|
||
| D. None of these |
| A. any positive numbers. | ||
|
B. singular values of |
||
| C. complex values. | ||
|
D. obtained from the dot product of |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. Every eigenvalue |
||
|
B. Every eigenvalue |
||
|
C. Every eigenvalue |
||
| D. All of these. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
| A. it is not closed under addition. | ||
| B. it is infinite. | ||
| C. it is not closed under multiplication. | ||
| D. it does not contain a zero vector. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
| A. normal | ||
| B. unitary | ||
| C. symmetric | ||
| D. square |
A. ,
|
||
B. ,
|
||
C. ,
|
||
| D. None of these |
| A. Normal operators are diagonal with respect to an orthonormal basis. | ||
| B. Normal operators are diagonal with respect to a singular set of vectors. | ||
| C. Nilpotent operators are diagonal with respect to an orthonormal basis. | ||
| D. Semi-symmetric operators are diagonal with respect to any basis. |
|
A. |
||
|
B. |
||
|
C. |
||
| D. None of these |
| A. Real | ||
| B. Complex | ||
| C. Degenerate | ||
| D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
| D. None of these. |
| A. Orthogonal | ||
| B. Isometries | ||
| C. Normal | ||
| D. All of these |
| A. Symmetric matrices | ||
| B. Hermitian matrices | ||
| C. Orthogonal matrices | ||
| D. All of these |
|
A. Find a unitary matrix |
||
|
B. Find a unitary matrix |
||
|
C. Find a unitary matrix |
||
|
D. Find a diagonal matrix |
|
A. |
||
|
B. |
||
|
C. |
||
| D. All of these |
| A. self-adjoint. | ||
| B. nilpotent. | ||
| C. orthogonal. | ||
| D. diagonal. |
|
A. |
||
|
B. |
||
|
C. |
||
| D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
| D. All of these |
| A. Similar | ||
| B. Equal | ||
| C. Orthogonal | ||
| D. None of these |
|
A. |
||
|
B. |
||
|
C. |
||
| D. All of these |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. Let |
||
|
B. Let |
||
|
C. Let |
||
| D. None of these. |
| A. a complete inner product space. | ||
| B. an inner product space. | ||
| C. a normed space. | ||
| D. none of these. |
| A. The angle between two vectors | ||
| B. The length of a vector | ||
| C. The direction of a vector | ||
| D. All of these |
and
. Applying the Gram-Schmidt process to
A.
|
||
B.
|
||
C.
|
||
D.
|
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
,
, and
. Which of the following is true?|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
A.
|
||
B.
|
||
C.
|
||
D.
|
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |