A. Finding a zero of f' ![]() |
||
B. Approximating f by a polynomial P and differentiating P ![]() |
||
C. Differentiating a Fourier transform of f and then applying an inverse transform ![]() |
||
D. Finding the slope of f at two randomly generated points ![]() |
||
E. None of the above ![]() |
A. 2.0 ![]() |
||
B. 2.1 ![]() |
||
C. 1.9 ![]() |
||
D. 0.21 ![]() |
||
E. 0.19 ![]() |
A. Every difference formula has a truncation error formula that can be minimized. ![]() |
||
B. High degree interpolating polynomials oscillate too much. ![]() |
||
C. Underflows increase as ![]() ![]() |
||
D. Overflows increase as ![]() ![]() |
||
E. Rounding errors increase as ![]() ![]() |
A. 2.000 ![]() |
||
B. 1.999 ![]() |
||
C. 1.989 ![]() |
||
D. 1.899 ![]() |
A. Centered difference formula at each ![]() ![]() |
||
B. 3-point difference formulas, forward difference at left endpoint, backward difference at right endpoint, and centered difference elsewhere ![]() |
||
C. Backward difference on left half of gridpoints, and forward difference on right half ![]() |
||
D. Alternating forward and backward differences, beginning with backward difference at ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. 2.0 ![]() |
||
B. 2.1 ![]() |
||
C. 1.9 ![]() |
||
D. 0.21 ![]() |
||
E. 0.19 ![]() |
A. They use a Taylor polynomial for f'. ![]() |
||
B. They integrate a piecewise polynomial approximation to f. ![]() |
||
C. They are a type of Monte Carlo method. ![]() |
||
D. They require orthogonal polynomial integration. ![]() |
||
E. None of the above ![]() |
A. 0.3750 ![]() |
||
B. 0.5000 ![]() |
||
C. 0.6667 ![]() |
||
D. 0.3333 ![]() |
||
E. 0.2500 ![]() |
A. 0.3750 ![]() |
||
B. 0.5000 ![]() |
||
C. 0.3333 ![]() |
||
D. 1.500 ![]() |
||
E. 0.3125 ![]() |
A. Subdivides if the integral is too large. ![]() |
||
B. It subdivides if the derivative is too large. ![]() |
||
C. It subdivides if rounding error exceedes truncation error. ![]() |
||
D. It subdivides if error estimate is too large. ![]() |
A. Using a left sided Riemann sum ![]() |
||
B. Approximating f by a polynomial P and integrating P ![]() |
||
C. Integrating a Fourier transform of f and then applying an inverse transform ![]() |
||
D. Finding the average height of f at n randomly generated points ![]() |
||
E. None of the above ![]() |
A. 13.02 ![]() |
||
B. 13.01 ![]() |
||
C. 13.0 ![]() |
||
D. 13.1 ![]() |
||
E. None of the above ![]() |
A. 31% ![]() |
||
B. 0.449 ![]() |
||
C. 44.9% ![]() |
||
D. 0 ![]() |
||
E. 1.449 ![]() |
A. 1 ![]() |
||
B. 0.4 ![]() |
||
C. 0 ![]() |
||
D. 0 ![]() |
||
E. 1.3 ![]() |
A. t-g ![]() |
||
B. g ![]() |
||
C. All t ![]() |
||
D. 0 ![]() |
||
E. It depends on the compiler. ![]() |
A. Both commutative and associative ![]() |
||
B. Commutative but not associative ![]() |
||
C. Neither commutative nor associative ![]() |
||
D. Associative but not commutative ![]() |
A. Swamping does not violate the fundamental axiom of floating point arithmetic, but cancellation does. ![]() |
||
B. Cancellation loses precision, while swamping does not. ![]() |
||
C. Swamping loses precision, while cancellation does not. ![]() |
||
D. Swamping can only happen with multiplication and cancellation only with addition. ![]() |
A. Underflow ![]() |
||
B. Overflow ![]() |
||
C. The distance between 1 and the nearest float to 1 ![]() |
||
D. 1/Overflow ![]() |
A. y underflowed. ![]() |
||
B. y=0. ![]() |
||
C. |y| is less than |x|*(machine epsilon). ![]() |
||
D. fl(0+y)=0. ![]() |
A. The floats are farther apart but have a larger range. ![]() |
||
B. The floats are nearer each other but have a smaller range. ![]() |
||
C. There are more floats. ![]() |
||
D. Underflow is smaller. ![]() |
||
E. The machine precision grows. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. Highly accurate ![]() |
||
B. Rounding correct ![]() |
||
C. Backward stable ![]() |
||
D. Well conditioned ![]() |
||
E. Robust ![]() |
A. Swamping ![]() |
||
B. Machine epsilon ![]() |
||
C. Truncation error ![]() |
||
D. Cancellation ![]() |
||
E. None of the above ![]() |
A. Backward stable ![]() |
||
B. Well conditioned ![]() |
||
C. Robust ![]() |
||
D. Ill conditioned ![]() |
||
E. Highly accurate ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. Problem is stable and method is backward stable. ![]() |
||
B. Problem is stable and method is well conditioned. ![]() |
||
C. Problem is well conditioned and method is well conditioned. ![]() |
||
D. Problem is well conditioned and method is backward stable. ![]() |
A. Cancellation limit ![]() |
||
B. Machine epsilon ![]() |
||
C. Underflow ![]() |
||
D. Backward error ![]() |
||
E. None of the above ![]() |
A. 0.003 ![]() |
||
B. 0.00324 ![]() |
||
C. 0.003242 ![]() |
||
D. 0.00 ![]() |
||
E. None of the above ![]() |
A. 142 ![]() |
||
B. 142.324 ![]() |
||
C. 142.3 ![]() |
||
D. 142.32 ![]() |
||
E. None of the above ![]() |
A. Chopping ![]() |
||
B. Cancellation ![]() |
||
C. Truncation Error ![]() |
||
D. Swamping ![]() |
||
E. Tail Error ![]() |
A. ![]() ![]() ![]() ![]() |
||
B. ![]() ![]() |
||
C. Given ![]() ![]() ![]() |
||
D. Find ![]() ![]() ![]() |
||
E. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. An interpolator and a numerical differentiation rule ![]() |
||
B. A quadrature rule and an IVP solver ![]() |
||
C. A root finder and a quadrature rule ![]() |
||
D. An IVP solver and a root finder ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. None of the above ![]() |
A. Because of rounding errors ![]() |
||
B. Because of truncation errors ![]() |
||
C. As ![]() ![]() |
||
D. As ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. None of the above ![]() |
A. Because it averages 3 values in ![]() ![]() |
||
B. Because Euler's method is unstable ![]() |
||
C. Because the corrector needs a prediction ![]() |
||
D. Because a 3-step method needs 2 previous approximations to y ![]() |
||
E. Because a 3-step method needs 3 previous approximations to y ![]() |
A. Euler's method is unstable. ![]() |
||
B. Eulers method has local truncation error ![]() ![]() |
||
C. Euler's method has large rounding errors. ![]() |
||
D. Euler's method is too slow for a 3 step method. ![]() |
||
E. Taylor methods are more general. ![]() |
A. The corrector is typically a higher order Runge Kutta method. ![]() |
||
B. The corrector is typically a low order Runge Kutta method. ![]() |
||
C. The corrector is typically an implicit method. ![]() |
||
D. The corrector is typically a higher order explicit multistep method. ![]() |
A. 1.297 ![]() |
||
B. 1.015 ![]() |
||
C. 0.7650 ![]() |
||
D. 1.547 ![]() |
A. 1 ![]() |
||
B. 2 ![]() |
||
C. 4 ![]() |
||
D. 5 ![]() |
||
E. 6 ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. Taylor's method ![]() |
||
B. Adams-Bashforth's method ![]() |
||
C. Adams-Moulton's method ![]() |
||
D. Runge-Kutta's method ![]() |
A. 3.00 ![]() |
||
B. 3.75 ![]() |
||
C. 2.00 ![]() |
||
D. 4.55 ![]() |
||
E. 6.30 ![]() |
A. A good starting guess ![]() |
||
B. An error estimate ![]() |
||
C. Multistep method ![]() |
||
D. A list of allowable step sizes ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. 1 ![]() |
||
B. 2 ![]() |
||
C. 4 ![]() |
||
D. 5 ![]() |
||
E. 6 ![]() |
A. 1 ![]() |
||
B. 2 ![]() |
||
C. 4 ![]() |
||
D. 5 ![]() |
||
E. 6 ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. Stiff IVP's require a small timestep. ![]() |
||
B. Stiff IVP's require predictor-corrector methods. ![]() |
||
C. Stiff IVP's require Taylor methods. ![]() |
||
D. Stiff IVP's require high order methods. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() |
A. Taylor methods require the evaluation of ![]() ![]() |
||
B. Taylor polynomials oscilate too much. ![]() |
||
C. Taylor methods replace derivatives with function evaluations. ![]() |
||
D. Taylor methods are not parallelizable because of nested function evaluations. ![]() |
A. k+1 ![]() |
||
B. k/2 ![]() |
||
C. 2k ![]() |
||
D. k-1 ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() |
||
D. The initial ![]() ![]() |
||
E. ![]() ![]() ![]() ![]() |
A. Partial differential equation ![]() |
||
B. Ill posed differential equation ![]() |
||
C. Side-condition differential equation ![]() |
||
D. Boundary value problem ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. It has degree ![]() ![]() ![]() |
||
B. It is ![]() ![]() |
||
C. It is ![]() ![]() |
||
D. It is a root of ![]() ![]() |
||
E. It is deflated. ![]() |
A. Newton's, secant, bisection ![]() |
||
B. Newton's, bisection, secant ![]() |
||
C. Secant, Newton's, bisection ![]() |
||
D. Secant, bisection, Newton's ![]() |
||
E. Bisection, Newton's, secant ![]() |
A. The Chinese remainder method ![]() |
||
B. Degree slashing ![]() |
||
C. Synthetic division ![]() |
||
D. Deflation ![]() |
A. Newton's method is more accurate. ![]() |
||
B. Extracting ![]() ![]() |
||
C. It is pretend. ![]() |
||
D. Rounding errors and truncation errors work against each other. ![]() |
A. Its degree is 4. ![]() |
||
B. Its degree is no more than 4. ![]() |
||
C. Its degree is no more than 7. ![]() |
||
D. Its degree must be more than 7. ![]() |
||
E. None of the above ![]() |
A. Hermite ![]() |
||
B. Taylor ![]() |
||
C. Lagrange ![]() |
||
D. Piecewise linear ![]() |
||
E. Quadratic spline ![]() |
A. 2.6 ![]() |
||
B. 2.8 ![]() |
||
C. 3.9 ![]() |
||
D. 1.5 ![]() |
||
E. 2.9 ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. There is no error; it is well posed. ![]() |
A. Only one ![]() |
||
B. Depends upon the knot positions ![]() |
||
C. n+1 Lagrange basis functions ![]() |
||
D. Infinitely many ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. None of the above ![]() |
A. 4.1 ![]() |
||
B. 3.8 ![]() |
||
C. 3.9 ![]() |
||
D. 3.5 ![]() |
||
E. 2.9 ![]() |
A. Osculating polynomial ![]() |
||
B. Lagrange interpolator ![]() |
||
C. Hermite interpolator ![]() |
||
D. Vandermonde interpolator ![]() |
||
E. None of the above ![]() |
A. Three basis functions, each of degree 2 ![]() |
||
B. Two basis functions, each of degree two ![]() |
||
C. Two basis functions, each of degree three ![]() |
||
D. Three basis functions, of degree 1, degree 2 and degree 3 ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. 4 ![]() |
||
B. 5 ![]() |
||
C. 6 ![]() |
||
D. 7 ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. None of the above ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. 10.149 ![]() |
||
B. 10.150 ![]() |
||
C. 5.5074 ![]() |
||
D. 9.8500 ![]() |
||
E. 10.001 ![]() |
A. n ![]() |
||
B. 2n ![]() |
||
C. n+2 ![]() |
||
D. n/2 ![]() |
||
E. None of the above ![]() |
A. It is close to the correct answer. ![]() |
||
B. It gives the bisector of the zero. ![]() |
||
C. It is not complex. ![]() |
||
D. It gives function height and slope. ![]() |
||
E. None of the above ![]() |
A. 4 ![]() |
||
B. 5 ![]() |
||
C. 6 ![]() |
||
D. 8 ![]() |
||
E. 10 ![]() |
A. f has exactly one zero in [a,b]. ![]() |
||
B. f has 0, 1, or infinitely many zeros in [a,b]. ![]() |
||
C. f has an even number of zeros in [a,b]. ![]() |
||
D. f has an odd number of zeros in [a,b]. ![]() |
A. Newton's method ![]() |
||
B. Bisection method ![]() |
||
C. Secant method ![]() |
||
D. Meuller's method ![]() |
||
E. False position ![]() |
A. Newton's method ![]() |
||
B. Secant method ![]() |
||
C. Bisection method ![]() |
||
D. None of the above ![]() |
A. Neither Newton's nor bisection can be applied here. ![]() |
||
B. Neither Newton's nor secant can be applied here. ![]() |
||
C. Bisection cannot be applied here. ![]() |
||
D. Newton's method cannot be applied here. ![]() |
A. For each iteration, Newton's method adds 1 correct bit and bisection add about 0.5 correct bits. ![]() |
||
B. For each of the two iterations, Newton's method doubles number of correct bits and bisection adds 2 correct bits. ![]() |
||
C. For each iteration, Newton's method doubles the number of correct bits and bisection adds 1 correct bit. ![]() |
||
D. For each iteration, Newton's method adds two correct bits and bisection adds 1 correct bit. ![]() |
A. Linearizing ![]() ![]() ![]() |
||
B. Bisecting the line from ![]() ![]() ![]() |
||
C. Approximating ![]() ![]() ![]() |
||
D. Approximating ![]() ![]() |
||
E. None of the above ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. It does not always converge. ![]() |
||
B. It may divide by zero. ![]() |
||
C. It requires the evaluation of f'. ![]() |
||
D. It may get stuck in a cycle. ![]() |
||
E. It requires complex arithmetic. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
A. Using the secant angle between ![]() ![]() ![]() ![]() |
||
B. Averaging the Newton method and the bisection method ![]() |
||
C. Approximating ![]() ![]() ![]() |
||
D. Finding the x-intercept of the line joining ![]() ![]() ![]() |
||
E. None of the above ![]() |
A. k-1 ![]() |
||
B. k ![]() |
||
C. k+1 ![]() |
||
D. k+2 ![]() |
||
E. 2k ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |