| a. They may contain one independent variable. | ||
| b. They are composed of one or more derivatives with respect to the independent variable. | ||
| c. They do not contain partial derivatives. | ||
| d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. 1 | ||
| b. 2 | ||
| c. 3 | ||
| d. 4 |
| a. Linear | ||
| b. Nonlinear | ||
| c. Homogeneous | ||
| d. All of the above |
|
a. No, the student should have determined the solution to be |
||
|
b. No, the student should have determined the solution to be |
||
| c. No, the student should have determined that there is no solution. | ||
| d. Yes, the student did not make any errors. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
| d. There is no solution. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
| d. There is no solution. |
|
a. |
||
|
b. |
||
|
c. |
||
| d. There is no solution. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
| d. None of the above |
|
a. Linear ordinary differential equations are of the form |
||
|
b. Linear ordinary differential equations are of the form |
||
| c. Linear ordinary differential equations do not contain partial derivatives. | ||
| d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
| d. None of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. The method of variation of parameters is a much more general method than the method of undetermined coefficients which can be used in many cases. | ||
| b. Although the complementary solution is absolutely required when using the method of variation of parameters, it is not required when using the method of undetermined coefficients. | ||
| c. When using the method of variation of parameters, it is possible that the acquired integrals cannot be determined. | ||
| d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. x = 0 and 1 are ordinary points. | ||
| b. x = 0 and 1 are regular singularities. | ||
| c. x = 0 and 1 are irregular singularities. | ||
| d. Insufficient information has been provided to distinguish whether x = 0 and 1 are ordinary points, regular singularities, or irregular singularities. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. In order to satisfy the Bessel equation, the general solution must be |
||
|
b. In order to satisfy the Bessel equation, the general solution must be |
||
|
c. In order to satisfy the Bessel equation, the general solution must be |
||
|
d. In order to satisfy the Bessel equation, the general solution must be |
||
| e. A and B |
|
a. When |
||
|
b. When |
||
|
c. When |
||
| d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
| d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
| d. Each general solution corresponds to one of the given cases. |
|
a. |
||
|
b. |
||
|
c. |
||
| d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
||
| e. All of the above |
| a. There exists a solution. | ||
| b. The solution exists in some open interval centered at 0. | ||
| c. The solution exists and is unique in some (possibly smaller) interval centered at 0. | ||
| d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. An integral transform is an operator (e.g., map one function to another function). | ||
| b. The use of selected integral transforms can be used to turn differential equations subject to particular boundary conditions into much simpler algebra problems. | ||
| c. The solution that arises as a result of the use of selected integral transforms must be inverted to represent the solution of the original differential equation. | ||
| d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. It is possible to use a Laplace transform power spectrum as a basic tool for the complex-exponential decomposition of finite-duration continuous functions. | ||
| b. It is possible to use a Laplace transform power spectrum within selected applications which include pole-zero estimation. | ||
| c. It is not possible to use a Laplace transform power spectrum as a basic tool for the complex-exponential decomposition of finite-duration continuous functions. | ||
| d. A and B are both correct. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. -1.308179 | ||
| b. 0.308179 | ||
| c. 1.308179 | ||
| d. 2.308179 |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. They can be used to model inverted pendulum dynamics involving a stationary pivot point. | ||
| b. They can be used to model inverted pendulum dynamics where the inverted pendulum is on a cart consisting of a horizontally moving base. | ||
| c. They can be used to model inverted pendulum dynamics where the inverted pendulum is connected to a massless oscillating base. | ||
| d. All of the above |
| a. They can be used to model double pendulums composed of two simple pendulums. | ||
| b. They can be used to model double pendulums composed of two compound pendulums. | ||
| c. They can be used to model double pendulums composed of two limbs of equal or unequal lengths and/or masses | ||
| d. All of the above |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. The solution for this differential equation can be used to make predictions regarding the size of the population as a function of time which is measured in years. | ||
| b. The solution for this differential equation takes into consideration the probability associated with the birth of males or females within a given year. | ||
| c. The solution for this differential equation takes into consideration the probability associated with the death of a person within a given year. | ||
| d. All of the above |