a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. I, II, and III ![]() |
||
b. II only ![]() |
||
c. Both I and III ![]() |
||
d. Both II and III ![]() |
a. Both I and II ![]() |
||
b. III only ![]() |
||
c. I, II, and III ![]() |
||
d. I only ![]() |
a. I or II ![]() |
||
b. I or III ![]() |
||
c. II or III ![]() |
||
d. I, II, or III ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. Both I and III ![]() |
||
b. Both II and III ![]() |
||
c. III only ![]() |
||
d. II only ![]() |
a. ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() |
||
d. ![]() ![]() |
a. -12 ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. Both I and II ![]() |
||
b. Both I and III ![]() |
||
c. Both II and III ![]() |
||
d. I, II, and III ![]() |
a. I only ![]() |
||
b. II only ![]() |
||
c. Both I and II ![]() |
||
d. Neither I nor II ![]() |
a. 81 ![]() |
||
b. -2 ![]() |
||
c. 0 ![]() |
||
d. 1 ![]() |
a. I only ![]() |
||
b. I and II only ![]() |
||
c. I and III only ![]() |
||
d. I, II, and III ![]() |
a. ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() ![]() |
||
c. For all ![]() ![]() ![]() |
||
d. ![]() ![]() |
a. I, II, and III ![]() |
||
b. I and II only ![]() |
||
c. I and III only ![]() |
||
d. II and III only ![]() |
a. bounded. ![]() |
||
b. symmetric. ![]() |
||
c. continuous. ![]() |
||
d. normal. ![]() |
a. I, II, and III ![]() |
||
b. I and II only ![]() |
||
c. II and III only ![]() |
||
d. I only ![]() |
a. Every function f in ![]() ![]() ![]() |
||
b. There is a piecewise continuous function defined on ![]() ![]() |
||
c. ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() |
||
d. ![]() ![]() |
a. It is not defined, because of the discontinuity of ![]() ![]() ![]() |
||
b. It converges to ![]() ![]() ![]() |
||
c. It converges to ![]() ![]() |
||
d. It does not converge because of the jump discontinuity. ![]() |
a. Neither I nor II ![]() |
||
b. I only ![]() |
||
c. II only ![]() |
||
d. Both I and II ![]() |
a. I only ![]() |
||
b. II only ![]() |
||
c. Neither I nor II ![]() |
||
d. Both I and II ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. The Fourier cosine series of ![]() ![]() ![]() ![]() ![]() |
||
b. The Fourier sine series of ![]() ![]() ![]() ![]() |
||
c. The Fourier sine series of ![]() ![]() ![]() ![]() ![]() |
||
d. The Fourier cosine series of ![]() ![]() ![]() ![]() |
a. I only ![]() |
||
b. II only ![]() |
||
c. I and III only ![]() |
||
d. II and III only ![]() |
a. ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. I only ![]() |
||
b. II only ![]() |
||
c. Neither I nor II ![]() |
||
d. Both I and II ![]() |
a. ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() |
||
d. ![]() ![]() |
a. I only ![]() |
||
b. I and III only ![]() |
||
c. II and III only ![]() |
||
d. I, II, and III ![]() |
a. I only ![]() |
||
b. II only ![]() |
||
c. Neither I nor II ![]() |
||
d. Both I and II ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. I only ![]() |
||
b. I and II only ![]() |
||
c. I and III only ![]() |
||
d. I, II, and III ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. I only ![]() |
||
b. II only ![]() |
||
c. Neither I nor II ![]() |
||
d. Both I and II ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. The inverse Fourier transform of ![]() ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. I only ![]() |
||
b. III only ![]() |
||
c. I and II only ![]() |
||
d. II and III only ![]() |
a. The sum of two solutions of the PDE ![]() ![]() |
||
b. The PDE ![]() ![]() |
||
c. The 3-dimensional Laplace equation ![]() ![]() |
||
d. The Fokker-Plank equation ![]() ![]() ![]() |
a. I only ![]() |
||
b. II only ![]() |
||
c. Both I and II ![]() |
||
d. Neither I nor II ![]() |
a. Both II and III ![]() |
||
b. Both I and III ![]() |
||
c. I, II, and III ![]() |
||
d. I only ![]() |
a. ![]() ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. The boundary is an imperfect conductor. ![]() |
||
b. The boundary is a permeable barrier to the flow of heat. ![]() |
||
c. No heat is crossing the boundary. ![]() |
||
d. The speed and direction of heat flow through the left boundary are positive. ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 0 ![]() |
||
b. 1 ![]() |
||
c. 3 ![]() |
||
d. 4 ![]() |
a. I only ![]() |
||
b. II only ![]() |
||
c. Both I and II ![]() |
||
d. Neither I nor II ![]() |
a. I only ![]() |
||
b. II only ![]() |
||
c. Both I and II ![]() |
||
d. Neither I nor II ![]() |