a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. I, II, and III | ||
b. II only | ||
c. Both I and III | ||
d. Both II and III |
a. Both I and II | ||
b. III only | ||
c. I, II, and III | ||
d. I only |
a. I or II | ||
b. I or III | ||
c. II or III | ||
d. I, II, or III |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. Both I and III | ||
b. Both II and III | ||
c. III only | ||
d. II only |
a. in ?. | ||
b. converges pointwise to . | ||
c. is uniformly bounded on . | ||
d. . |
a. -12 | ||
b. | ||
c. | ||
d. |
a. Both I and II | ||
b. Both I and III | ||
c. Both II and III | ||
d. I, II, and III |
a. I only | ||
b. II only | ||
c. Both I and II | ||
d. Neither I nor II |
a. 81 | ||
b. -2 | ||
c. 0 | ||
d. 1 |
a. I only | ||
b. I and II only | ||
c. I and III only | ||
d. I, II, and III |
a. , for all . | ||
b. , for all , and for all . | ||
c. For all , . | ||
d. . |
a. I, II, and III | ||
b. I and II only | ||
c. I and III only | ||
d. II and III only |
a. bounded. | ||
b. symmetric. | ||
c. continuous. | ||
d. normal. |
a. I, II, and III | ||
b. I and II only | ||
c. II and III only | ||
d. I only |
a. Every function f in has a unique Fourier representation on . | ||
b. There is a piecewise continuous function defined on that does not have a unique Fourier representation. | ||
c. , where the norm is taken in the sense of . | ||
d. If , then the Fourier sine series representation of converges pointwise to . |
a. | ||
b. | ||
c. | ||
d. |
a. , for some . | ||
b. is orthogonal to the vector , for all . | ||
c. has a positive divergence at every point . | ||
d. is a conservative vector field. |
a. It is not defined, because of the discontinuity of at . | ||
b. It converges to , because . | ||
c. It converges to . | ||
d. It does not converge because of the jump discontinuity. |
a. Neither I nor II | ||
b. I only | ||
c. II only | ||
d. Both I and II |
a. I only | ||
b. II only | ||
c. Neither I nor II | ||
d. Both I and II |
a. | ||
b. | ||
c. | ||
d. |
a. The Fourier cosine series of on does not converge to at . | ||
b. The Fourier sine series of is undefined at points of jump discontinuity of in . | ||
c. The Fourier sine series of does not converge to when is continuous at but has a sharp corner there. | ||
d. The Fourier cosine series of does not converge uniformly to on . |
a. I only | ||
b. II only | ||
c. I and III only | ||
d. II and III only |
a. , for any | ||
b. for any | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. I only | ||
b. II only | ||
c. Neither I nor II | ||
d. Both I and II |
a. is continuous on . | ||
b. is differentiable on . | ||
c. , for every . | ||
d. . |
a. I only | ||
b. I and III only | ||
c. II and III only | ||
d. I, II, and III |
a. I only | ||
b. II only | ||
c. Neither I nor II | ||
d. Both I and II |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. I only | ||
b. I and II only | ||
c. I and III only | ||
d. I, II, and III |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. , where is the Fourier transform of . | ||
c. | ||
d. |
a. | ||
b. , for all . (Here, T stands for transpose.) | ||
c. does not contain the origin . (Here, T stands for transpose.) | ||
d. is a linear operator. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. I only | ||
b. II only | ||
c. Neither I nor II | ||
d. Both I and II |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. The inverse Fourier transform of is . | ||
c. | ||
d. |
a. I only | ||
b. III only | ||
c. I and II only | ||
d. II and III only |
a. The sum of two solutions of the PDE is also a solution. | ||
b. The PDE is homogeneous. | ||
c. The 3-dimensional Laplace equation is a nonlinear elliptic PDE. | ||
d. The Fokker-Plank equation is nonhomogeneous, where . |
a. I only | ||
b. II only | ||
c. Both I and II | ||
d. Neither I nor II |
a. Both II and III | ||
b. Both I and III | ||
c. I, II, and III | ||
d. I only |
a. , where stands for the outward normal derivative, is a Neumann boundary condition. | ||
b. are homogeneous Dirichlet boundary conditions. | ||
c. are initial conditions. | ||
d. is a periodic initial condition. |
a. The boundary is an imperfect conductor. | ||
b. The boundary is a permeable barrier to the flow of heat. | ||
c. No heat is crossing the boundary. | ||
d. The speed and direction of heat flow through the left boundary are positive. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. 0 | ||
b. 1 | ||
c. 3 | ||
d. 4 |
a. I only | ||
b. II only | ||
c. Both I and II | ||
d. Neither I nor II |
a. I only | ||
b. II only | ||
c. Both I and II | ||
d. Neither I nor II |