a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. I, II, and III | ||
b. II only | ||
c. Both I and III | ||
d. Both II and III |
a. Both I and II | ||
b. III only | ||
c. I, II, and III | ||
d. I only |
a. I or II | ||
b. I or III | ||
c. II or III | ||
d. I, II, or III |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. Both I and III | ||
b. Both II and III | ||
c. III only | ||
d. II only |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() |
a. -12 | ||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. Both I and II | ||
b. Both I and III | ||
c. Both II and III | ||
d. I, II, and III |
a. I only | ||
b. II only | ||
c. Both I and II | ||
d. Neither I nor II |
a. 81 | ||
b. -2 | ||
c. 0 | ||
d. 1 |
a. I only | ||
b. I and II only | ||
c. I and III only | ||
d. I, II, and III |
a. ![]() ![]() |
||
b. ![]() ![]() ![]() |
||
c. For all ![]() ![]() |
||
d. ![]() |
a. I, II, and III | ||
b. I and II only | ||
c. I and III only | ||
d. II and III only |
a. bounded. | ||
b. symmetric. | ||
c. continuous. | ||
d. normal. |
a. I, II, and III | ||
b. I and II only | ||
c. II and III only | ||
d. I only |
a. Every function f in ![]() ![]() |
||
b. There is a piecewise continuous function defined on ![]() |
||
c. ![]() ![]() |
||
d. If ![]() ![]() ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() |
a. It is not defined, because of the discontinuity of ![]() ![]() |
||
b. It converges to ![]() ![]() |
||
c. It converges to ![]() |
||
d. It does not converge because of the jump discontinuity. |
a. Neither I nor II | ||
b. I only | ||
c. II only | ||
d. Both I and II |
a. I only | ||
b. II only | ||
c. Neither I nor II | ||
d. Both I and II |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. The Fourier cosine series of ![]() ![]() ![]() ![]() |
||
b. The Fourier sine series of ![]() ![]() ![]() |
||
c. The Fourier sine series of ![]() ![]() ![]() ![]() |
||
d. The Fourier cosine series of ![]() ![]() ![]() |
a. I only | ||
b. II only | ||
c. I and III only | ||
d. II and III only |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. I only | ||
b. II only | ||
c. Neither I nor II | ||
d. Both I and II |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() |
a. I only | ||
b. I and III only | ||
c. II and III only | ||
d. I, II, and III |
a. I only | ||
b. II only | ||
c. Neither I nor II | ||
d. Both I and II |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. I only | ||
b. I and II only | ||
c. I and III only | ||
d. I, II, and III |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() ![]() ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. I only | ||
b. II only | ||
c. Neither I nor II | ||
d. Both I and II |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. The inverse Fourier transform of ![]() ![]() |
||
c. ![]() |
||
d. ![]() |
a. I only | ||
b. III only | ||
c. I and II only | ||
d. II and III only |
a. The sum of two solutions of the PDE ![]() |
||
b. The PDE ![]() |
||
c. The 3-dimensional Laplace equation ![]() |
||
d. The Fokker-Plank equation ![]() ![]() |
a. I only | ||
b. II only | ||
c. Both I and II | ||
d. Neither I nor II |
a. Both II and III | ||
b. Both I and III | ||
c. I, II, and III | ||
d. I only |
a. ![]() ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. The boundary is an imperfect conductor. | ||
b. The boundary is a permeable barrier to the flow of heat. | ||
c. No heat is crossing the boundary. | ||
d. The speed and direction of heat flow through the left boundary are positive. |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. 0 | ||
b. 1 | ||
c. 3 | ||
d. 4 |
a. I only | ||
b. II only | ||
c. Both I and II | ||
d. Neither I nor II |
a. I only | ||
b. II only | ||
c. Both I and II | ||
d. Neither I nor II |