|
a. 1, 2, 3, 4, 5, 6, 7, 8, ... |
||
|
b. 2, 3, 5, 7, 11, 13, 17, 19, ... |
||
|
c. 1, 1, 2, 3, 5, 8, 13, 21, ... |
||
|
d. 1, 3, 6, 10, 15, 21, 28, 36, ... |
|
a. Finitely many, because once you reach a certain size, every number factors into smaller primes. |
||
|
b. We do not know, because computers aren't powerful enough to compute as large as we need. |
||
|
c. Infinitely many, otherwise you could simply take the product of all of them and add one. |
||
|
d. Infinitely many in theory, as you could theoretically extend the Sieve of Eratosthenes indefinitely. |
|
a. 0 |
||
|
b. 1 |
||
|
c. 7 |
||
|
d. infinitely many |
|
a. 3 must divide one of |
||
|
b. 3 divides neither |
||
|
c. 3 divides both |
||
|
d. We do not know if 3 divides |
|
a. 6 must divide one of |
||
|
b. 6 divides neither |
||
|
c. 6 divides both |
||
|
d. We do not know if 6 divides |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. the natural numbers |
||
|
b. the integers |
||
|
c. the set of linear residues modulo 8 |
||
|
d. the set of algebraic numbers |
|
a. ... < -1 < 0 < 1 < 2 < 3 < ... |
||
|
b. ... > -1 > 0 > 1 > 2 > 3 > ... |
||
|
c. |
||
|
d. {} < {a}, {b} < {a,b} |
|
a. Composite numbers can be rewritten as products of prime numbers. |
||
|
b. Prime numbers have only a few properties, which are however very powerful. |
||
|
c. It is harder to study prime numbers, but more rewarding. |
||
|
d. It is easier to determine whether a number is prime. |
|
a. 3 |
||
|
b. 33 |
||
|
c. 99 |
||
|
d. 187 |
|
a. 9 |
||
|
b. 473 |
||
|
c. 11 |
||
|
d. 803 |
|
a. no integer values of |
||
|
b. |
||
|
c. |
||
|
d. all integer values of |
|
a. no integer values of |
||
|
b. |
||
|
c. |
||
|
d. all integer values of |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. We can find integers |
||
|
c. |
||
|
d. |
|
a. no relationship without more information |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. only that |
||
|
b. that |
||
|
c. that |
||
|
d. that |
|
a. all integers |
||
|
b. multiples of |
||
|
c. multiples of |
||
|
d. multiples of |
|
a. all integers |
||
|
b. even integers |
||
|
c. odd integers |
||
|
d. multiples of |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. no relationship without more information |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. at most 75 |
||
|
b. at most 100 |
||
|
c. at most 175 |
||
|
d. at most 35 |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. 4 |
||
|
b. 6 |
||
|
c. 19 |
||
|
d. 24 |
|
a. 75 |
||
|
b. 87 |
||
|
c. 105 |
||
|
d. no solution |
|
a. The number is divisible by both 2 and 3. |
||
|
b. The sum |
||
|
c. The sum |
||
|
d. There is no such rule. |
|
a. You can always check divisibility by rotating through positive and negative remainders. |
||
|
b. The coefficient of each |
||
|
c. You can always check divisibility by |
||
|
d. This is one of those random coincidences in mathematics that you simply have to accept. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. There is none. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. There is none. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. If |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. If |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. Writing it as a ratio of two integers leads to a contradiction. |
||
|
b. Its decimal expansion is infinite, but repeating. |
||
|
c. Its decimal expansion is infinite, with factorial zeros. |
||
|
d. Writing it as a ratio of two algebraic numbers leads to a contradiction. |
|
a. Its decimal expansion is finite. |
||
|
b. Its decimal expansion is infinite, but repeats. |
||
|
c. Its decimal expansion is infinite, and does not repeat. |
||
|
d. Its decimal expansion is infinite, with factorial zeros. |
|
a. Rescaling the vector that represents |
||
|
b. Reversing the vector that represents |
||
|
c. Rotating the vector that represents |
||
|
d. Shifting the vector that represents |
|
a. the integers |
||
|
b. the rational numbers |
||
|
c. the algebraic numbers |
||
|
d. the real numbers |
|
a. Liouville's number |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. the rational numbers |
||
|
b. the algebraic numbers |
||
|
c. the integers |
||
|
d. any finite field |
|
a. the integers |
||
|
b. the Gaussian integers |
||
|
c. the set of linear residues modulo -5 |
||
|
d. the set of linear residues modulo 8 |
|
a. [0;1,1,2] |
||
|
b. [2;1,1] |
||
|
c. [3;5] |
||
|
d. [0;3,5] |
|
a. [1;1,1] |
||
|
b. [1;1,2] |
||
|
c. [1;2,3] |
||
|
d. [5;3] |
|
a. [2;1,5,2,2,7,1,16,4,1,8,10,...] |
||
|
b. [2;1,5,2,2,7] |
||
|
c. [2;1,5,2,2,7,1,5,2,2,7,...] |
||
|
d. [2;0] |
|
a. [4;1,3,1,8] |
||
|
b. [4;0] |
||
|
c. [4;1,3,1,8,1,3,1,8,...] |
||
|
d. [4;1,3,1,8,1,4,1,16,...] |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. -1 |
||
|
b. 0 |
||
|
c. 1 |
||
|
d. undefined |
|
a. -1 |
||
|
b. 0 |
||
|
c. 1 |
||
|
d. undefined |
|
a. 361 |
||
|
b. 702 |
||
|
c. 1170 |
||
|
d. 2592 |
|
a. 117 |
||
|
b. 401 |
||
|
c. 1170 |
||
|
d. 2916 |
|
a. 24 |
||
|
b. 96 |
||
|
c. 120 |
||
|
d. 300 |
|
a. 16 |
||
|
b. 25 |
||
|
c. 160 |
||
|
d. 200 |
|
a. It is very difficult to factor |
||
|
b. Most numbers smaller than |
||
|
c. Computing exponents modulo |
||
|
d. Bezout's formula guarantees an inverse modulo |
|
a. compute large primes |
||
|
b. compute large exponents modulo a prime |
||
|
c. compute the greatest common divisor |
||
|
d. factor large integers |
|
a. 1 |
||
|
b. 5 |
||
|
c. 25 |
||
|
d. No solution |
|
a. 1 and -1 |
||
|
b. 3 and -3 |
||
|
c. 9 |
||
|
d. No solution |
|
a. 302 |
||
|
b. 511 |
||
|
c. 792 |
||
|
d. 851 |
|
a. Fibonacci numbers |
||
|
b. the Golden ratio |
||
|
c. Mersenne primes |
||
|
d. Fermat primes |
|
a. |
||
|
b. |
||
|
c. If |
||
|
d. If |
|
a. |
||
|
b. |
||
|
c. If |
||
|
d. If |
|
a. The communicating parties exchange encryption and decryption keys. |
||
|
b. The communicating parties build large prime numbers. |
||
|
c. The communicating parties perform exponentiation modulo a large composite number. |
||
|
d. The communicating parties would be in danger if integer factorization were "easy". |
|
a. 2 |
||
|
b. 8 |
||
|
c. 102 |
||
|
d. 496 |
|
a. Composite numbers |
||
|
b. Fermat numbers |
||
|
c. Fibonacci numbers |
||
|
d. Mersenne numbers |