a. 1, 2, 3, 4, 5, 6, 7, 8, ... ![]() |
||
b. 2, 3, 5, 7, 11, 13, 17, 19, ... ![]() |
||
c. 1, 1, 2, 3, 5, 8, 13, 21, ... ![]() |
||
d. 1, 3, 6, 10, 15, 21, 28, 36, ... ![]() |
a. Finitely many, because once you reach a certain size, every number factors into smaller primes. ![]() |
||
b. We do not know, because computers aren't powerful enough to compute as large as we need. ![]() |
||
c. Infinitely many, otherwise you could simply take the product of all of them and add one. ![]() |
||
d. Infinitely many in theory, as you could theoretically extend the Sieve of Eratosthenes indefinitely. ![]() |
a. 0 ![]() |
||
b. 1 ![]() |
||
c. 7 ![]() |
||
d. infinitely many ![]() |
a. 3 must divide one of ![]() ![]() ![]() |
||
b. 3 divides neither ![]() ![]() ![]() |
||
c. 3 divides both ![]() ![]() ![]() |
||
d. We do not know if 3 divides ![]() ![]() ![]() |
a. 6 must divide one of ![]() ![]() ![]() |
||
b. 6 divides neither ![]() ![]() ![]() |
||
c. 6 divides both ![]() ![]() ![]() |
||
d. We do not know if 6 divides ![]() ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. the natural numbers ![]() |
||
b. the integers ![]() |
||
c. the set of linear residues modulo 8 ![]() |
||
d. the set of algebraic numbers ![]() |
a. ... < -1 < 0 < 1 < 2 < 3 < ... ![]() |
||
b. ... > -1 > 0 > 1 > 2 > 3 > ... ![]() |
||
c. ![]() ![]() ![]() |
||
d. {} < {a}, {b} < {a,b} ![]() |
a. Composite numbers can be rewritten as products of prime numbers. ![]() |
||
b. Prime numbers have only a few properties, which are however very powerful. ![]() |
||
c. It is harder to study prime numbers, but more rewarding. ![]() |
||
d. It is easier to determine whether a number is prime. ![]() |
a. 3 ![]() |
||
b. 33 ![]() |
||
c. 99 ![]() |
||
d. 187 ![]() |
a. 9 ![]() |
||
b. 473 ![]() |
||
c. 11 ![]() |
||
d. 803 ![]() |
a. no integer values of ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. all integer values of ![]() ![]() |
a. no integer values of ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. all integer values of ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() ![]() ![]() |
||
b. We can find integers ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() ![]() ![]() |
||
d. ![]() ![]() |
a. no relationship without more information ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() ![]() |
||
d. ![]() ![]() |
a. only that ![]() ![]() ![]() |
||
b. that ![]() ![]() |
||
c. that ![]() ![]() |
||
d. that ![]() ![]() |
a. all integers ![]() |
||
b. multiples of ![]() ![]() |
||
c. multiples of ![]() ![]() |
||
d. multiples of ![]() ![]() |
a. all integers ![]() |
||
b. even integers ![]() |
||
c. odd integers ![]() |
||
d. multiples of ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() ![]() |
||
d. no relationship without more information ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. at most 75 ![]() |
||
b. at most 100 ![]() |
||
c. at most 175 ![]() |
||
d. at most 35 ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. 4 ![]() |
||
b. 6 ![]() |
||
c. 19 ![]() |
||
d. 24 ![]() |
a. 75 ![]() |
||
b. 87 ![]() |
||
c. 105 ![]() |
||
d. no solution ![]() |
a. The number is divisible by both 2 and 3. ![]() |
||
b. The sum ![]() ![]() |
||
c. The sum ![]() ![]() |
||
d. There is no such rule. ![]() |
a. You can always check divisibility by rotating through positive and negative remainders. ![]() |
||
b. The coefficient of each ![]() ![]() |
||
c. You can always check divisibility by ![]() ![]() ![]() |
||
d. This is one of those random coincidences in mathematics that you simply have to accept. ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. There is none. ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. There is none. ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. If ![]() ![]() ![]() |
||
b. If ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() |
a. If ![]() ![]() ![]() ![]() |
||
b. If ![]() ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() ![]() ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. Writing it as a ratio of two integers leads to a contradiction. ![]() |
||
b. Its decimal expansion is infinite, but repeating. ![]() |
||
c. Its decimal expansion is infinite, with factorial zeros. ![]() |
||
d. Writing it as a ratio of two algebraic numbers leads to a contradiction. ![]() |
a. Its decimal expansion is finite. ![]() |
||
b. Its decimal expansion is infinite, but repeats. ![]() |
||
c. Its decimal expansion is infinite, and does not repeat. ![]() |
||
d. Its decimal expansion is infinite, with factorial zeros. ![]() |
a. Rescaling the vector that represents ![]() ![]() |
||
b. Reversing the vector that represents ![]() ![]() |
||
c. Rotating the vector that represents ![]() ![]() |
||
d. Shifting the vector that represents ![]() ![]() |
a. the integers ![]() |
||
b. the rational numbers ![]() |
||
c. the algebraic numbers ![]() |
||
d. the real numbers ![]() |
a. Liouville's number ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. the rational numbers ![]() |
||
b. the algebraic numbers ![]() |
||
c. the integers ![]() |
||
d. any finite field ![]() |
a. the integers ![]() |
||
b. the Gaussian integers ![]() |
||
c. the set of linear residues modulo -5 ![]() |
||
d. the set of linear residues modulo 8 ![]() |
a. [0;1,1,2] ![]() |
||
b. [2;1,1] ![]() |
||
c. [3;5] ![]() |
||
d. [0;3,5] ![]() |
a. [1;1,1] ![]() |
||
b. [1;1,2] ![]() |
||
c. [1;2,3] ![]() |
||
d. [5;3] ![]() |
a. [2;1,5,2,2,7,1,16,4,1,8,10,...] ![]() |
||
b. [2;1,5,2,2,7] ![]() |
||
c. [2;1,5,2,2,7,1,5,2,2,7,...] ![]() |
||
d. [2;0] ![]() |
a. [4;1,3,1,8] ![]() |
||
b. [4;0] ![]() |
||
c. [4;1,3,1,8,1,3,1,8,...] ![]() |
||
d. [4;1,3,1,8,1,4,1,16,...] ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. -1 ![]() |
||
b. 0 ![]() |
||
c. 1 ![]() |
||
d. undefined ![]() |
a. -1 ![]() |
||
b. 0 ![]() |
||
c. 1 ![]() |
||
d. undefined ![]() |
a. 361 ![]() |
||
b. 702 ![]() |
||
c. 1170 ![]() |
||
d. 2592 ![]() |
a. 117 ![]() |
||
b. 401 ![]() |
||
c. 1170 ![]() |
||
d. 2916 ![]() |
a. 24 ![]() |
||
b. 96 ![]() |
||
c. 120 ![]() |
||
d. 300 ![]() |
a. 16 ![]() |
||
b. 25 ![]() |
||
c. 160 ![]() |
||
d. 200 ![]() |
a. It is very difficult to factor ![]() ![]() |
||
b. Most numbers smaller than ![]() ![]() ![]() |
||
c. Computing exponents modulo ![]() ![]() |
||
d. Bezout's formula guarantees an inverse modulo ![]() ![]() |
a. compute large primes ![]() |
||
b. compute large exponents modulo a prime ![]() |
||
c. compute the greatest common divisor ![]() |
||
d. factor large integers ![]() |
a. 1 ![]() |
||
b. 5 ![]() |
||
c. 25 ![]() |
||
d. No solution ![]() |
a. 1 and -1 ![]() |
||
b. 3 and -3 ![]() |
||
c. 9 ![]() |
||
d. No solution ![]() |
a. 302 ![]() |
||
b. 511 ![]() |
||
c. 792 ![]() |
||
d. 851 ![]() |
a. Fibonacci numbers ![]() |
||
b. the Golden ratio ![]() |
||
c. Mersenne primes ![]() |
||
d. Fermat primes ![]() |
a. ![]() ![]() ![]() ![]() |
||
b. ![]() ![]() |
||
c. If ![]() ![]() ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() ![]() |
a. ![]() ![]() ![]() |
||
b. ![]() ![]() |
||
c. If ![]() ![]() ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() ![]() |
a. The communicating parties exchange encryption and decryption keys. ![]() |
||
b. The communicating parties build large prime numbers. ![]() |
||
c. The communicating parties perform exponentiation modulo a large composite number. ![]() |
||
d. The communicating parties would be in danger if integer factorization were "easy". ![]() |
a. 2 ![]() |
||
b. 8 ![]() |
||
c. 102 ![]() |
||
d. 496 ![]() |
a. Composite numbers ![]() |
||
b. Fermat numbers ![]() |
||
c. Fibonacci numbers ![]() |
||
d. Mersenne numbers ![]() |