a. 1, 2, 3, 4, 5, 6, 7, 8, ... | ||
b. 2, 3, 5, 7, 11, 13, 17, 19, ... | ||
c. 1, 1, 2, 3, 5, 8, 13, 21, ... | ||
d. 1, 3, 6, 10, 15, 21, 28, 36, ... |
a. Finitely many, because once you reach a certain size, every number factors into smaller primes. | ||
b. We do not know, because computers aren't powerful enough to compute as large as we need. | ||
c. Infinitely many, otherwise you could simply take the product of all of them and add one. | ||
d. Infinitely many in theory, as you could theoretically extend the Sieve of Eratosthenes indefinitely. |
a. 0 | ||
b. 1 | ||
c. 7 | ||
d. infinitely many |
a. 3 must divide one of or . | ||
b. 3 divides neither nor . | ||
c. 3 divides both and . | ||
d. We do not know if 3 divides or . |
a. 6 must divide one of or . | ||
b. 6 divides neither nor . | ||
c. 6 divides both and . | ||
d. We do not know if 6 divides or . |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. the natural numbers | ||
b. the integers | ||
c. the set of linear residues modulo 8 | ||
d. the set of algebraic numbers |
a. ... < -1 < 0 < 1 < 2 < 3 < ... | ||
b. ... > -1 > 0 > 1 > 2 > 3 > ... | ||
c. if and only if | ||
d. {} < {a}, {b} < {a,b} |
a. Composite numbers can be rewritten as products of prime numbers. | ||
b. Prime numbers have only a few properties, which are however very powerful. | ||
c. It is harder to study prime numbers, but more rewarding. | ||
d. It is easier to determine whether a number is prime. |
a. 3 | ||
b. 33 | ||
c. 99 | ||
d. 187 |
a. 9 | ||
b. 473 | ||
c. 11 | ||
d. 803 |
a. no integer values of | ||
b. only | ||
c. only | ||
d. all integer values of |
a. no integer values of | ||
b. only | ||
c. only | ||
d. all integer values of |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. divides if and only if | ||
b. We can find integers such that . | ||
c. divides or divides . | ||
d. |
a. no relationship without more information | ||
b. | ||
c. divides | ||
d. |
a. only that divides | ||
b. that | ||
c. that | ||
d. that |
a. all integers | ||
b. multiples of | ||
c. multiples of | ||
d. multiples of |
a. all integers | ||
b. even integers | ||
c. odd integers | ||
d. multiples of |
a. | ||
b. | ||
c. divides | ||
d. no relationship without more information |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. at most 75 | ||
b. at most 100 | ||
c. at most 175 | ||
d. at most 35 |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. 4 | ||
b. 6 | ||
c. 19 | ||
d. 24 |
a. 75 | ||
b. 87 | ||
c. 105 | ||
d. no solution |
a. The number is divisible by both 2 and 3. | ||
b. The sum is divisible by both 2 and 3. | ||
c. The sum is divisible by 12. | ||
d. There is no such rule. |
a. You can always check divisibility by rotating through positive and negative remainders. | ||
b. The coefficient of each are congruent to powers of ten that correspond to its digit. | ||
c. You can always check divisibility by by rotating through prime numbers smaller than . | ||
d. This is one of those random coincidences in mathematics that you simply have to accept. |
a. | ||
b. | ||
c. | ||
d. There is none. |
a. | ||
b. | ||
c. | ||
d. There is none. |
a. | ||
b. | ||
c. | ||
d. |
a. If , then . | ||
b. If , then . | ||
c. If , then . | ||
d. If , then . |
a. If , then or . | ||
b. If divides , then has at least one solution. | ||
c. If , then . | ||
d. If is congruent to , but not to , then is not congruent to . |
a. | ||
b. | ||
c. | ||
d. |
a. Writing it as a ratio of two integers leads to a contradiction. | ||
b. Its decimal expansion is infinite, but repeating. | ||
c. Its decimal expansion is infinite, with factorial zeros. | ||
d. Writing it as a ratio of two algebraic numbers leads to a contradiction. |
a. Its decimal expansion is finite. | ||
b. Its decimal expansion is infinite, but repeats. | ||
c. Its decimal expansion is infinite, and does not repeat. | ||
d. Its decimal expansion is infinite, with factorial zeros. |
a. Rescaling the vector that represents . | ||
b. Reversing the vector that represents . | ||
c. Rotating the vector that represents by 90 degrees. | ||
d. Shifting the vector that represents vertically by 1. |
a. the integers | ||
b. the rational numbers | ||
c. the algebraic numbers | ||
d. the real numbers |
a. Liouville's number | ||
b. | ||
c. | ||
d. |
a. the rational numbers | ||
b. the algebraic numbers | ||
c. the integers | ||
d. any finite field |
a. the integers | ||
b. the Gaussian integers | ||
c. the set of linear residues modulo -5 | ||
d. the set of linear residues modulo 8 |
a. [0;1,1,2] | ||
b. [2;1,1] | ||
c. [3;5] | ||
d. [0;3,5] |
a. [1;1,1] | ||
b. [1;1,2] | ||
c. [1;2,3] | ||
d. [5;3] |
a. [2;1,5,2,2,7,1,16,4,1,8,10,...] | ||
b. [2;1,5,2,2,7] | ||
c. [2;1,5,2,2,7,1,5,2,2,7,...] | ||
d. [2;0] |
a. [4;1,3,1,8] | ||
b. [4;0] | ||
c. [4;1,3,1,8,1,3,1,8,...] | ||
d. [4;1,3,1,8,1,4,1,16,...] |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. | ||
b. | ||
c. | ||
d. |
a. -1 | ||
b. 0 | ||
c. 1 | ||
d. undefined |
a. -1 | ||
b. 0 | ||
c. 1 | ||
d. undefined |
a. 361 | ||
b. 702 | ||
c. 1170 | ||
d. 2592 |
a. 117 | ||
b. 401 | ||
c. 1170 | ||
d. 2916 |
a. 24 | ||
b. 96 | ||
c. 120 | ||
d. 300 |
a. 16 | ||
b. 25 | ||
c. 160 | ||
d. 200 |
a. It is very difficult to factor at the present time. | ||
b. Most numbers smaller than are relatively prime to . | ||
c. Computing exponents modulo is relatively easy. | ||
d. Bezout's formula guarantees an inverse modulo . |
a. compute large primes | ||
b. compute large exponents modulo a prime | ||
c. compute the greatest common divisor | ||
d. factor large integers |
a. 1 | ||
b. 5 | ||
c. 25 | ||
d. No solution |
a. 1 and -1 | ||
b. 3 and -3 | ||
c. 9 | ||
d. No solution |
a. 302 | ||
b. 511 | ||
c. 792 | ||
d. 851 |
a. Fibonacci numbers | ||
b. the Golden ratio | ||
c. Mersenne primes | ||
d. Fermat primes |
a. for every integer and | ||
b. | ||
c. If does not divide , then does not divide . | ||
d. If and are relatively prime, then . |
a. = | ||
b. | ||
c. If divides , then divides . | ||
d. If and are relatively prime, then . |
a. The communicating parties exchange encryption and decryption keys. | ||
b. The communicating parties build large prime numbers. | ||
c. The communicating parties perform exponentiation modulo a large composite number. | ||
d. The communicating parties would be in danger if integer factorization were "easy". |
a. 2 | ||
b. 8 | ||
c. 102 | ||
d. 496 |
a. Composite numbers | ||
b. Fermat numbers | ||
c. Fibonacci numbers | ||
d. Mersenne numbers |