| a. 1, 2, 3, 4, 5, 6, 7, 8, ... | ||
| b. 2, 3, 5, 7, 11, 13, 17, 19, ... | ||
| c. 1, 1, 2, 3, 5, 8, 13, 21, ... | ||
| d. 1, 3, 6, 10, 15, 21, 28, 36, ... |
| a. Finitely many, because once you reach a certain size, every number factors into smaller primes. | ||
| b. We do not know, because computers aren't powerful enough to compute as large as we need. | ||
| c. Infinitely many, otherwise you could simply take the product of all of them and add one. | ||
| d. Infinitely many in theory, as you could theoretically extend the Sieve of Eratosthenes indefinitely. |
| a. 0 | ||
| b. 1 | ||
| c. 7 | ||
| d. infinitely many |
|
a. 3 must divide one of |
||
|
b. 3 divides neither |
||
|
c. 3 divides both |
||
|
d. We do not know if 3 divides |
|
a. 6 must divide one of |
||
|
b. 6 divides neither |
||
|
c. 6 divides both |
||
|
d. We do not know if 6 divides |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. the natural numbers | ||
| b. the integers | ||
| c. the set of linear residues modulo 8 | ||
| d. the set of algebraic numbers |
| a. ... < -1 < 0 < 1 < 2 < 3 < ... | ||
| b. ... > -1 > 0 > 1 > 2 > 3 > ... | ||
|
c. |
||
| d. {} < {a}, {b} < {a,b} |
| a. Composite numbers can be rewritten as products of prime numbers. | ||
| b. Prime numbers have only a few properties, which are however very powerful. | ||
| c. It is harder to study prime numbers, but more rewarding. | ||
| d. It is easier to determine whether a number is prime. |
| a. 3 | ||
| b. 33 | ||
| c. 99 | ||
| d. 187 |
| a. 9 | ||
| b. 473 | ||
| c. 11 | ||
| d. 803 |
|
a. no integer values of |
||
|
b. |
||
|
c. |
||
|
d. all integer values of |
|
a. no integer values of |
||
|
b. |
||
|
c. |
||
|
d. all integer values of |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. We can find integers |
||
|
c. |
||
|
d. |
| a. no relationship without more information | ||
|
b. |
||
|
c. |
||
|
d. |
|
a. only that |
||
|
b. that |
||
|
c. that |
||
|
d. that |
| a. all integers | ||
|
b. multiples of |
||
|
c. multiples of |
||
|
d. multiples of |
| a. all integers | ||
| b. even integers | ||
| c. odd integers | ||
|
d. multiples of |
|
a. |
||
|
b. |
||
|
c. |
||
| d. no relationship without more information |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. at most 75 | ||
| b. at most 100 | ||
| c. at most 175 | ||
| d. at most 35 |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. 4 | ||
| b. 6 | ||
| c. 19 | ||
| d. 24 |
| a. 75 | ||
| b. 87 | ||
| c. 105 | ||
| d. no solution |
| a. The number is divisible by both 2 and 3. | ||
|
b. The sum |
||
|
c. The sum |
||
| d. There is no such rule. |
| a. You can always check divisibility by rotating through positive and negative remainders. | ||
|
b. The coefficient of each |
||
|
c. You can always check divisibility by |
||
| d. This is one of those random coincidences in mathematics that you simply have to accept. |
|
a. |
||
|
b. |
||
|
c. |
||
| d. There is none. |
|
a. |
||
|
b. |
||
|
c. |
||
| d. There is none. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. If |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. If |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. Writing it as a ratio of two integers leads to a contradiction. | ||
| b. Its decimal expansion is infinite, but repeating. | ||
| c. Its decimal expansion is infinite, with factorial zeros. | ||
| d. Writing it as a ratio of two algebraic numbers leads to a contradiction. |
| a. Its decimal expansion is finite. | ||
| b. Its decimal expansion is infinite, but repeats. | ||
| c. Its decimal expansion is infinite, and does not repeat. | ||
| d. Its decimal expansion is infinite, with factorial zeros. |
|
a. Rescaling the vector that represents |
||
|
b. Reversing the vector that represents |
||
|
c. Rotating the vector that represents |
||
|
d. Shifting the vector that represents |
| a. the integers | ||
| b. the rational numbers | ||
| c. the algebraic numbers | ||
| d. the real numbers |
| a. Liouville's number | ||
|
b. |
||
|
c. |
||
|
d. |
| a. the rational numbers | ||
| b. the algebraic numbers | ||
| c. the integers | ||
| d. any finite field |
| a. the integers | ||
| b. the Gaussian integers | ||
| c. the set of linear residues modulo -5 | ||
| d. the set of linear residues modulo 8 |
| a. [0;1,1,2] | ||
| b. [2;1,1] | ||
| c. [3;5] | ||
| d. [0;3,5] |
| a. [1;1,1] | ||
| b. [1;1,2] | ||
| c. [1;2,3] | ||
| d. [5;3] |
| a. [2;1,5,2,2,7,1,16,4,1,8,10,...] | ||
| b. [2;1,5,2,2,7] | ||
| c. [2;1,5,2,2,7,1,5,2,2,7,...] | ||
| d. [2;0] |
| a. [4;1,3,1,8] | ||
| b. [4;0] | ||
| c. [4;1,3,1,8,1,3,1,8,...] | ||
| d. [4;1,3,1,8,1,4,1,16,...] |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
| a. -1 | ||
| b. 0 | ||
| c. 1 | ||
| d. undefined |
| a. -1 | ||
| b. 0 | ||
| c. 1 | ||
| d. undefined |
| a. 361 | ||
| b. 702 | ||
| c. 1170 | ||
| d. 2592 |
| a. 117 | ||
| b. 401 | ||
| c. 1170 | ||
| d. 2916 |
| a. 24 | ||
| b. 96 | ||
| c. 120 | ||
| d. 300 |
| a. 16 | ||
| b. 25 | ||
| c. 160 | ||
| d. 200 |
|
a. It is very difficult to factor |
||
|
b. Most numbers smaller than |
||
|
c. Computing exponents modulo |
||
|
d. Bezout's formula guarantees an inverse modulo |
| a. compute large primes | ||
| b. compute large exponents modulo a prime | ||
| c. compute the greatest common divisor | ||
| d. factor large integers |
| a. 1 | ||
| b. 5 | ||
| c. 25 | ||
| d. No solution |
| a. 1 and -1 | ||
| b. 3 and -3 | ||
| c. 9 | ||
| d. No solution |
| a. 302 | ||
| b. 511 | ||
| c. 792 | ||
| d. 851 |
| a. Fibonacci numbers | ||
| b. the Golden ratio | ||
| c. Mersenne primes | ||
| d. Fermat primes |
|
a. |
||
|
b. |
||
|
c. If |
||
|
d. If |
|
a. |
||
|
b. |
||
|
c. If |
||
|
d. If |
| a. The communicating parties exchange encryption and decryption keys. | ||
| b. The communicating parties build large prime numbers. | ||
| c. The communicating parties perform exponentiation modulo a large composite number. | ||
| d. The communicating parties would be in danger if integer factorization were "easy". |
| a. 2 | ||
| b. 8 | ||
| c. 102 | ||
| d. 496 |
| a. Composite numbers | ||
| b. Fermat numbers | ||
| c. Fibonacci numbers | ||
| d. Mersenne numbers |