To show that two sets ![]() ![]() |
||
If ![]() ![]() ![]() ![]() ![]() |
||
If a function ![]() ![]() |
The value of ![]() |
||
The value of ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. The Archimedean Property ![]() |
||
B. The Well-Ordering Principle ![]() |
||
C. The completeness of the real numbers ![]() |
||
D. The Supremum Property ![]() |
||
E. The Axiom of Choice ![]() |
A. It is Cauchy. ![]() |
||
B. It contains a convergent subsequence. ![]() |
||
C. It is convergent. ![]() |
||
D. It is nonincreasing. ![]() |
||
E. Its ![]() ![]() ![]() |
A. For every ![]() ![]() ![]() ![]() ![]() |
||
B. For some ![]() ![]() ![]() ![]() ![]() |
||
C. For every ![]() ![]() ![]() ![]() ![]() |
||
D. For some ![]() ![]() ![]() ![]() ![]() |
||
E. For every ![]() ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. There exists ![]() ![]() ![]() ![]() |
||
B. Every sequence ![]() ![]() ![]() ![]() |
||
C. Every sequence ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
||
E. If ![]() ![]() ![]() ![]() ![]() |
A. In order for every sequence in ![]() ![]() ![]() |
||
B. In order for every sequence in ![]() ![]() ![]() |
||
C. In order for every sequence in ![]() ![]() ![]() |
||
D. In order for every sequence in ![]() ![]() ![]() |
||
E. If ![]() ![]() ![]() |
A. If every convergent sequence in ![]() ![]() |
||
B. If every Cauchy sequence in ![]() ![]() |
||
C. If every bounded sequence in ![]() ![]() |
||
D. If every sequentially continuous function on ![]() ![]() |
||
E. If every open cover of ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. In order for ![]() ![]() ![]() |
||
B. In order for ![]() ![]() ![]() |
||
C. In order for ![]() ![]() ![]() |
||
D. In order for ![]() ![]() ![]() |
||
E. None of the above ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() |
||
C. There exists a sequence ![]() ![]() ![]() ![]() |
||
D. There exists a point ![]() ![]() ![]() ![]() |
||
E. ![]() ![]() |
Let be a sequence of functions with
. Which of the following is true?
A. In order for ![]() ![]() ![]() ![]() ![]() ![]() |
||
B. In order for ![]() ![]() ![]() ![]() ![]() ![]() |
||
C. In order for ![]() ![]() ![]() ![]() ![]() ![]() |
||
D. In order for ![]() ![]() ![]() ![]() ![]() ![]() |
||
E. If for every subsequence ![]() ![]() ![]() ![]() ![]() ![]() |
A. For every ![]() ![]() ![]() ![]() ![]() |
||
B. There exists ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||
C. There exists ![]() ![]() ![]() ![]() ![]() ![]() |
||
D. There exists ![]() ![]() ![]() ![]() ![]() ![]() |
||
E. There exists ![]() ![]() ![]() ![]() ![]() ![]() |
A. In order to have ![]() ![]() ![]() ![]() |
||
B. In order to have ![]() ![]() ![]() ![]() |
||
C. In order to have ![]() ![]() ![]() ![]() |
||
D. In order to have ![]() ![]() ![]() ![]() |
||
E. If ![]() ![]() ![]() ![]() |
A. If ![]() ![]() ![]() |
||
B. If ![]() ![]() ![]() |
||
C. If ![]() ![]() ![]() |
||
D. If ![]() ![]() ![]() |
||
E. If ![]() ![]() ![]() |
A. If for some ![]() ![]() ![]() ![]() ![]() |
||
B. ![]() ![]() |
||
C. The function ![]() ![]() |
||
D. If ![]() ![]() ![]() ![]() |
||
E. Both options A and B are correct. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. None of the above. ![]() |
A. For all ![]() ![]() ![]() ![]() ![]() ![]() |
||
B. For all ![]() ![]() ![]() ![]() ![]() ![]() |
||
C. Given ![]() ![]() ![]() ![]() ![]() ![]() |
||
D. There exists ![]() ![]() ![]() ![]() ![]() ![]() |
||
E. For all ![]() ![]() ![]() ![]() ![]() ![]() |
A. For every ![]() ![]() ![]() ![]() ![]() |
||
B. There exists some ![]() ![]() ![]() ![]() ![]() |
||
C. For every ![]() ![]() ![]() ![]() ![]() |
||
D. For every ![]() ![]() ![]() ![]() ![]() |
||
E. There exists a natural number ![]() ![]() ![]() ![]() ![]() |
A. ![]() ![]() ![]() ![]() |
||
B. There is no element ![]() ![]() ![]() |
||
C. ![]() ![]() |
||
D. There is an element ![]() ![]() ![]() |
||
E. There are elements ![]() ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. None of the above. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. Step 1 ![]() |
||
B. Step 2 ![]() |
||
C. Step 3 ![]() |
||
D. Step 4 ![]() |
||
E. Step 5 ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. None of the above ![]() |
A. If ![]() ![]() ![]() ![]() |
||
B. If ![]() ![]() ![]() ![]() |
||
C. If ![]() ![]() ![]() ![]() |
||
D. If ![]() ![]() ![]() ![]() |
||
E. If ![]() ![]() ![]() ![]() |
A. As ![]() ![]() ![]() ![]() |
||
B. As ![]() ![]() ![]() ![]() |
||
C. As ![]() ![]() ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
||
E. ![]() ![]() ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. ![]() ![]() |
||
B. The intersection of ![]() ![]() ![]() |
||
C. For every point ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() ![]() |
A. Every compact set is perfect. ![]() |
||
B. Every closed, unbounded set is perfect. ![]() |
||
C. Every closed set is compact, perfect, or both. ![]() |
||
D. Every perfect set is uncountable. ![]() |
||
E. Every perfect set is bounded. ![]() |
A. Every sequence in ![]() ![]() |
||
B. ![]() ![]() |
||
C. If ![]() ![]() ![]() |
||
D. If ![]() ![]() ![]() ![]() |
||
E. If ![]() ![]() ![]() ![]() ![]() ![]() |
A. If each ![]() ![]() ![]() |
||
B. If each ![]() ![]() ![]() |
||
C. If each ![]() ![]() ![]() ![]() |
||
D. If the convergence of ![]() ![]() ![]() ![]() |
||
E. If the convergence of ![]() ![]() ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() |
||
E. The sequence ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. ![]() ![]() |
||
B. The sequence ![]() ![]() ![]() ![]() |
||
C. ![]() ![]() |
||
D. For all subsets ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||
E. ![]() ![]() ![]() |
A. The Real Numbers ![]() |
||
B. The Irrational Numbers ![]() |
||
C. The Transcendental Numbers ![]() |
||
D. The Natural Numbers ![]() |
||
E. The 5th roots of unity ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. For every ![]() ![]() ![]() ![]() ![]() |
||
B. For every ![]() ![]() ![]() ![]() ![]() ![]() |
||
C. For every ![]() ![]() ![]() ![]() ![]() ![]() |
||
D. For every ![]() ![]() ![]() ![]() ![]() ![]() |
||
E. For every ![]() ![]() ![]() ![]() ![]() ![]() |
A. In order for ![]() ![]() ![]() ![]() |
||
B. In order for ![]() ![]() ![]() ![]() |
||
C. In order for ![]() ![]() ![]() ![]() |
||
D. In order for ![]() ![]() ![]() ![]() |
||
E. If ![]() ![]() ![]() ![]() |
A. For every ![]() ![]() ![]() ![]() ![]() ![]() |
||
B. For every ![]() ![]() ![]() ![]() ![]() ![]() |
||
C. For every ![]() ![]() ![]() ![]() ![]() ![]() |
||
D. For some small ![]() ![]() ![]() ![]() ![]() ![]() |
||
E. For every ![]() ![]() ![]() ![]() ![]() ![]() |
A. The set of matrices with rational elements. ![]() |
||
B. The set of functions that are continuous on the closed interval ![]() ![]() |
||
C. The set of real numbers. ![]() |
||
D. The set of polynomials of degree less than or equal to five with rational coefficients. ![]() |
||
E. The set of nonsingular matrices over the field of rational numbers ![]() |
A. Every nonempty set of positive integers contains a smallest element. ![]() |
||
B. If ![]() ![]() ![]() ![]() ![]() ![]() |
||
C. If ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||
D. The natural numbers are unbounded. ![]() |
||
E. The rational numbers are countable. ![]() |