|
To show that two sets |
||
|
If |
||
|
If a function |
|
The value of |
||
|
The value of |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. The Archimedean Property |
||
|
B. The Well-Ordering Principle |
||
|
C. The completeness of the real numbers |
||
|
D. The Supremum Property |
||
|
E. The Axiom of Choice |
|
A. It is Cauchy. |
||
|
B. It contains a convergent subsequence. |
||
|
C. It is convergent. |
||
|
D. It is nonincreasing. |
||
|
E. Its |
|
A. For every |
||
|
B. For some |
||
|
C. For every |
||
|
D. For some |
||
|
E. For every |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. There exists |
||
|
B. Every sequence |
||
|
C. Every sequence |
||
|
D. |
||
|
E. If |
|
A. In order for every sequence in |
||
|
B. In order for every sequence in |
||
|
C. In order for every sequence in |
||
|
D. In order for every sequence in |
||
|
E. If |
|
A. If every convergent sequence in |
||
|
B. If every Cauchy sequence in |
||
|
C. If every bounded sequence in |
||
|
D. If every sequentially continuous function on |
||
|
E. If every open cover of |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. In order for |
||
|
B. In order for |
||
|
C. In order for |
||
|
D. In order for |
||
|
E. None of the above |
|
A. |
||
|
B. |
||
|
C. There exists a sequence |
||
|
D. There exists a point |
||
|
E. |
Let
be a sequence of functions with
. Which of the following is true?
|
A. In order for |
||
|
B. In order for |
||
|
C. In order for |
||
|
D. In order for |
||
|
E. If for every subsequence |
|
A. For every |
||
|
B. There exists |
||
|
C. There exists |
||
|
D. There exists |
||
|
E. There exists |
|
A. In order to have |
||
|
B. In order to have |
||
|
C. In order to have |
||
|
D. In order to have |
||
|
E. If |
|
A. If |
||
|
B. If |
||
|
C. If |
||
|
D. If |
||
|
E. If |
|
A. If for some |
||
|
B. |
||
|
C. The function |
||
|
D. If |
||
|
E. Both options A and B are correct. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. None of the above. |
|
A. For all |
||
|
B. For all |
||
|
C. Given |
||
|
D. There exists |
||
|
E. For all |
|
A. For every |
||
|
B. There exists some |
||
|
C. For every |
||
|
D. For every |
||
|
E. There exists a natural number |
|
A. |
||
|
B. There is no element |
||
|
C. |
||
|
D. There is an element |
||
|
E. There are elements |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. None of the above. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. Step 1 |
||
|
B. Step 2 |
||
|
C. Step 3 |
||
|
D. Step 4 |
||
|
E. Step 5 |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. None of the above |
|
A. If |
||
|
B. If |
||
|
C. If |
||
|
D. If |
||
|
E. If |
|
A. As |
||
|
B. As |
||
|
C. As |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. The intersection of |
||
|
C. For every point |
||
|
D. |
||
|
E. |
|
A. Every compact set is perfect. |
||
|
B. Every closed, unbounded set is perfect. |
||
|
C. Every closed set is compact, perfect, or both. |
||
|
D. Every perfect set is uncountable. |
||
|
E. Every perfect set is bounded. |
|
A. Every sequence in |
||
|
B. |
||
|
C. If |
||
|
D. If |
||
|
E. If |
|
A. If each |
||
|
B. If each |
||
|
C. If each |
||
|
D. If the convergence of |
||
|
E. If the convergence of |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. The sequence |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. The sequence |
||
|
C. |
||
|
D. For all subsets |
||
|
E. |
|
A. The Real Numbers |
||
|
B. The Irrational Numbers |
||
|
C. The Transcendental Numbers |
||
|
D. The Natural Numbers |
||
|
E. The 5th roots of unity |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. For every |
||
|
B. For every |
||
|
C. For every |
||
|
D. For every |
||
|
E. For every |
|
A. In order for |
||
|
B. In order for |
||
|
C. In order for |
||
|
D. In order for |
||
|
E. If |
|
A. For every |
||
|
B. For every |
||
|
C. For every |
||
|
D. For some small |
||
|
E. For every |
|
A. The set of matrices with rational elements. |
||
|
B. The set of functions that are continuous on the closed interval |
||
|
C. The set of real numbers. |
||
|
D. The set of polynomials of degree less than or equal to five with rational coefficients. |
||
|
E. The set of nonsingular matrices over the field of rational numbers |
|
A. Every nonempty set of positive integers contains a smallest element. |
||
|
B. If |
||
|
C. If |
||
|
D. The natural numbers are unbounded. |
||
|
E. The rational numbers are countable. |