a. If the partial derivatives ![]() ![]() ![]() ![]() ![]() |
||
b. The directional derivative, if it exists, is a finite real number. | ||
c. For all vectors ![]() ![]() ![]() ![]() ![]() ![]() |
||
d. If the restriction of ![]() ![]() ![]() ![]() |
a. Regardless of what ![]() ![]() |
||
b. If ![]() ![]() ![]() |
||
c. The function ![]() |
||
d. If ![]() ![]() |
a. The Jacobian of a function ![]() |
||
b. Any positive number can arise as the Jacobian at the origin of some function ![]() |
||
c. If ![]() ![]() |
||
d. If ![]() ![]() ![]() ![]() |
a. ![]() ![]() ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() ![]() |
||
d. ![]() ![]() ![]() ![]() ![]() |
a. If ![]() ![]() ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. If the homogeneity condition is satisfied, then ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() |
||
c. ![]() ![]() |
||
d. ![]() ![]() |
a. If at every point ![]() ![]() ![]() |
||
b. If at some point ![]() ![]() ![]() ![]() ![]() |
||
c. If the Jacobian of ![]() ![]() ![]() |
||
d. If the Jacobian of ![]() ![]() ![]() ![]() |
a. If each ![]() ![]() |
||
b. If for all ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() |
a. If ![]() ![]() ![]() |
||
b. If ![]() ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() ![]() |
a. If ![]() ![]() ![]() ![]() ![]() ![]() |
||
b. If ![]() ![]() ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() ![]() ![]() ![]() |
||
d. Since there are infinitely many directions in which to compute directional derivatives, knowledge of any finite number of directional derivatives is never sufficient to determine all directional derivatives. |
a. If ![]() ![]() |
||
b. If ![]() ![]() |
||
c. The Jacobian is either always positive or always negative. | ||
d. If the Jacobian of ![]() ![]() |
a. For every ![]() ![]() ![]() |
||
b. The set ![]() |
||
c. If ![]() ![]() ![]() ![]() |
||
d. A closed set is never meager. |
a. compute partial derivatives of a function conditioned on excluding particular directions. | ||
b. find the largest value of ![]() ![]() ![]() |
||
c. find the inverse of a function when the Inverse Function Theorem applies but does not yield an unconditioned value. | ||
d. normalize the Jacobian, conditioned on the sign of the first ![]() |
a. If ![]() |
||
b. If ![]() |
||
c. If ![]() ![]() ![]() |
||
d. The Jacobian of ![]() ![]() |
a. If ![]() ![]() |
||
b. If ![]() ![]() |
||
c. If any restriction of ![]() ![]() |
||
d. ![]() ![]() |
a. ![]() ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() |
||
d. ![]() ![]() ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. If ![]() ![]() ![]() ![]() ![]() |
||
b. If ![]() ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
a. If ![]() ![]() |
||
b. The theorem that a function ![]() ![]() |
||
c. For every ![]() ![]() |
||
d. If ![]() ![]() ![]() ![]() ![]() |
a. If ![]() ![]() |
||
b. If ![]() ![]() |
||
c. If ![]() ![]() |
||
d. If ![]() ![]() |
a. The set of all rational numbers is a set of zero content. | ||
b. The set of all irrational numbers is a set of zero content. | ||
c. A countable union of sets of zero content is itself a set of zero content. | ||
d. Any finite set is a set of zero content. |
a. If ![]() ![]() ![]() |
||
b. If ![]() ![]() ![]() ![]() |
||
c. If the set ![]() ![]() |
||
d. If ![]() ![]() ![]() ![]() ![]() |
a. ![]() |
||
b. ![]() ![]() ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() ![]() ![]() |
||
d. ![]() ![]() ![]() ![]() ![]() |
a. If ![]() ![]() ![]() |
||
b. If ![]() ![]() ![]() ![]() ![]() |
||
c. If for all ![]() ![]() ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() |
a. The integral does not exist. | ||
b. The integral exists and equals ![]() |
||
c. The integral exists and equals ![]() |
||
d. The integral exists, but its value can't be evaluated in closed form. |
a. The Jordan content of ![]() ![]() |
||
b. If ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() |
||
d. The Jordan content of ![]() ![]() |
a. The union of finitely many Jordan measurable subsets is itself Jordan measurable. | ||
b. The intersection of a Jordan measurable subset and a set of zero content is itself a set of zero content. | ||
c. If ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() |
a. If ![]() ![]() ![]() |
||
b. If ![]() ![]() |
||
c. The stated equality never holds. | ||
d. The stated equality always holds. |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. If ![]() ![]() |
||
b. If ![]() ![]() |
||
c. If ![]() ![]() |
||
d. All of the answer options above hold true. |
a. If ![]() ![]() |
||
b. If ![]() ![]() ![]() ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() |
||
d. All of the answer options above are correct. |
a. If ![]() ![]() |
||
b. If ![]() ![]() |
||
c. If ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() ![]() |
a. It transforms the region ![]() ![]() ![]() ![]() |
||
b. It transforms the region ![]() ![]() ![]() ![]() |
||
c. It transforms the region ![]() ![]() ![]() ![]() |
||
d. It transforms the region ![]() ![]() ![]() ![]() |
a. ![]() ![]() ![]() ![]() |
||
b. ![]() ![]() ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() ![]() |
||
d. All of the answer options above are Riemann integrable functions. |
a. If ![]() ![]() ![]() |
||
b. If ![]() ![]() |
||
c. If ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() |
a. ![]() ![]() |
||
b. ![]() ![]() ![]() |
||
c. ![]() ![]() ![]() |
||
d. All of the answer options above describe sets of zero content. |
a. Both ![]() ![]() |
||
b. Either ![]() ![]() |
||
c. For all ![]() ![]() ![]() |
||
d. For all ![]() ![]() ![]() |
a. There exists an infinite subset ![]() ![]() ![]() |
||
b. If ![]() ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() |
a. If ![]() ![]() |
||
b. ![]() ![]() |
||
c. If ![]() ![]() |
||
d. If ![]() ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() ![]() |
||
b. If ![]() ![]() |
||
c. If ![]() ![]() |
||
d. ![]() ![]() ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() ![]() ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() ![]() ![]() |
||
d. ![]() ![]() |
a. If ![]() ![]() |
||
b. If ![]() ![]() |
||
c. If ![]() ![]() |
||
d. The validity or invalidity of each answer option above depends on the values of ![]() ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. ![]() |
||
b. ![]() |
||
c. If ![]() ![]() |
||
d. If ![]() ![]() |
a. If ![]() ![]() ![]() |
||
b. If ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. All of the answer options above lead to a closed form. |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. ![]() |
a. If ![]() ![]() |
||
b. If ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() |
||
d. If ![]() ![]() ![]() |
a. ![]() |
||
b. ![]() ![]() ![]() ![]() |
||
c. ![]() |
||
d. ![]() |
a. If ![]() ![]() |
||
b. If ![]() ![]() ![]() ![]() |
||
c. If ![]() ![]() ![]() |
||
d. All of the above answer options are correct. |
a. If ![]() ![]() ![]() ![]() ![]() |
||
b. The boundary of a degenerate ![]() ![]() |
||
c. Every boundary is a cycle. | ||
d. All of the above statements are correct. |
a. Every cycle is a boundary. | ||
b. ![]() ![]() |
||
c. A chain is a boundary if, and only if, it is a cycle. | ||
d. All of the statements above are incorrect. |
a. ![]() |
||
b. ![]() |
||
c. ![]() |
||
d. None of the above equalities is correct. |
a. Stokes' Formula. | ||
b. Green's Formula. | ||
c. Gauss' Formula. | ||
d. The resulting formula has no particular name. |
a. Such a matrix represents a linear transformation whose values are independent of a particular choice of
coordinates. Since volume depends on coordinates, the determinant must be ![]() |
||
b. Such a matrix represents a linear transformation whose values are dependent on a particular choice of basis.
Since volume depends on the basis, the determinant must be ![]() |
||
c. The ![]() ![]() ![]() ![]() |
||
d. All of the above statements are correct geometric explanations. |
a. The global angle form and the gradient. | ||
b. The global angle form and the Jacobian. | ||
c. The volume forms and the gradient. | ||
d. The volume forms and the Jacobian. |