|
a. If the partial derivatives |
||
| b. The directional derivative, if it exists, is a finite real number. | ||
|
c. For all vectors |
||
|
d. If the restriction of |
|
a. Regardless of what |
||
|
b. If |
||
|
c. The function |
||
|
d. If |
|
a. The Jacobian of a function |
||
|
b. Any positive number can arise as the Jacobian at the origin of some function |
||
|
c. If |
||
|
d. If |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. If |
||
|
b. |
||
|
c. |
||
|
d. If the homogeneity condition is satisfied, then |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. If at every point |
||
|
b. If at some point |
||
|
c. If the Jacobian of |
||
|
d. If the Jacobian of |
|
a. If each |
||
|
b. If for all |
||
|
c. If |
||
|
d. If |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. If |
|
a. If |
||
|
b. If |
||
|
c. If |
||
| d. Since there are infinitely many directions in which to compute directional derivatives, knowledge of any finite number of directional derivatives is never sufficient to determine all directional derivatives. |
|
a. If |
||
|
b. If |
||
| c. The Jacobian is either always positive or always negative. | ||
|
d. If the Jacobian of |
|
a. For every |
||
|
b. The set |
||
|
c. If |
||
| d. A closed set is never meager. |
| a. compute partial derivatives of a function conditioned on excluding particular directions. | ||
|
b. find the largest value of |
||
| c. find the inverse of a function when the Inverse Function Theorem applies but does not yield an unconditioned value. | ||
|
d. normalize the Jacobian, conditioned on the sign of the first |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. The Jacobian of |
|
a. If |
||
|
b. If |
||
|
c. If any restriction of |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. If |
|
a. If |
||
|
b. The theorem that a function |
||
|
c. For every |
||
|
d. If |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. If |
| a. The set of all rational numbers is a set of zero content. | ||
| b. The set of all irrational numbers is a set of zero content. | ||
| c. A countable union of sets of zero content is itself a set of zero content. | ||
| d. Any finite set is a set of zero content. |
|
a. If |
||
|
b. If |
||
|
c. If the set |
||
|
d. If |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. If |
||
|
b. If |
||
|
c. If for all |
||
|
d. If |
| a. The integral does not exist. | ||
|
b. The integral exists and equals |
||
|
c. The integral exists and equals |
||
| d. The integral exists, but its value can't be evaluated in closed form. |
|
a. The Jordan content of |
||
|
b. If |
||
|
c. If |
||
|
d. The Jordan content of |
| a. The union of finitely many Jordan measurable subsets is itself Jordan measurable. | ||
| b. The intersection of a Jordan measurable subset and a set of zero content is itself a set of zero content. | ||
|
c. If |
||
|
d. If |
|
a. If |
||
|
b. If |
||
| c. The stated equality never holds. | ||
| d. The stated equality always holds. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. If |
||
|
b. If |
||
|
c. If |
||
| d. All of the answer options above hold true. |
|
a. If |
||
|
b. If |
||
|
c. If |
||
| d. All of the answer options above are correct. |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. If |
|
a. It transforms the region |
||
|
b. It transforms the region |
||
|
c. It transforms the region |
||
|
d. It transforms the region |
|
a. |
||
|
b. |
||
|
c. |
||
| d. All of the answer options above are Riemann integrable functions. |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. If |
|
a. |
||
|
b. |
||
|
c. |
||
| d. All of the answer options above describe sets of zero content. |
|
a. Both |
||
|
b. Either |
||
|
c. For all |
||
|
d. For all |
|
a. There exists an infinite subset |
||
|
b. If |
||
|
c. If |
||
|
d. If |
|
a. If |
||
|
b. |
||
|
c. If |
||
|
d. If |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. If |
||
|
c. If |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. The validity or invalidity of each answer option above depends on the values of |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. |
||
|
b. |
||
|
c. If |
||
|
d. If |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. If |
|
a. |
||
|
b. |
||
|
c. |
||
| d. All of the answer options above lead to a closed form. |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. If |
||
|
b. If |
||
|
c. If |
||
|
d. If |
|
a. |
||
|
b. |
||
|
c. |
||
|
d. |
|
a. If |
||
|
b. If |
||
|
c. If |
||
| d. All of the above answer options are correct. |
|
a. If |
||
|
b. The boundary of a degenerate |
||
| c. Every boundary is a cycle. | ||
| d. All of the above statements are correct. |
| a. Every cycle is a boundary. | ||
|
b. |
||
| c. A chain is a boundary if, and only if, it is a cycle. | ||
| d. All of the statements above are incorrect. |
|
a. |
||
|
b. |
||
|
c. |
||
| d. None of the above equalities is correct. |
| a. Stokes' Formula. | ||
| b. Green's Formula. | ||
| c. Gauss' Formula. | ||
| d. The resulting formula has no particular name. |
|
a. Such a matrix represents a linear transformation whose values are independent of a particular choice of
coordinates. Since volume depends on coordinates, the determinant must be |
||
|
b. Such a matrix represents a linear transformation whose values are dependent on a particular choice of basis.
Since volume depends on the basis, the determinant must be |
||
|
c. The |
||
| d. All of the above statements are correct geometric explanations. |
| a. The global angle form and the gradient. | ||
| b. The global angle form and the Jacobian. | ||
| c. The volume forms and the gradient. | ||
| d. The volume forms and the Jacobian. |