A. 0 is an isolated point of ![]() |
||
B. 0 is a boundary point of ![]() |
||
C. 0 is an accumulation point of ![]() |
||
D. ![]() |
||
E. ![]() |
A. ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. ![]() |
||
E. ![]() |
A. The magnitude of ![]() ![]() |
||
B. The principle argument of ![]() ![]() |
||
C. The magnitude of ![]() ![]() |
||
D. If ![]() ![]() ![]() ![]() |
||
E. If ![]() ![]() ![]() ![]() |
A. ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. ![]() |
||
E. None of these choices |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. In order for ![]() ![]() ![]() ![]() ![]() |
||
B. In order for ![]() ![]() ![]() ![]() ![]() |
||
C. In order for ![]() ![]() ![]() ![]() ![]() |
||
D. In order for ![]() ![]() ![]() ![]() ![]() |
||
E. In order for ![]() ![]() ![]() ![]() ![]() |
A. ![]() |
||
B. ![]() |
||
C. ![]() ![]() |
||
D. ![]() |
||
E. None of these choices |
A. ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. ![]() |
||
E. None of these choices |
A. ![]() ![]() ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() ![]() ![]() |
||
E. ![]() ![]() ![]() ![]() ![]() |
A. The complex exponential is periodic. | ||
B. The complex exponential is onto (i.e. surjective). | ||
C. The complex exponential satisfies ![]() |
||
D. The complex exponential is holomorphic. | ||
E. The complex exponential satisfies ![]() ![]() |
A. The annulus ![]() |
||
B. The annulus ![]() |
||
C. The punctured disc ![]() |
||
D. The punctured disc ![]() |
||
E. None of these choices |
A. ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. ![]() |
||
E. ![]() |
A. ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. ![]() |
||
E. ![]() |
A. If ![]() ![]() ![]() ![]() ![]() ![]() |
||
B. If ![]() ![]() ![]() |
||
C. If ![]() ![]() ![]() ![]() |
||
D. If ![]() ![]() |
||
E. None of these choices |
A. ![]() |
||
B. ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() ![]() ![]() |
||
E. The winding number of ![]() ![]() |
A. In order to have ![]() ![]() |
||
B. In order to have ![]() ![]() |
||
C. In order to have ![]() ![]() |
||
D. In order to have ![]() ![]() |
||
E. In order to have ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. Analytic functions which are bounded on a subset of their domain are constant on that subset. | ||
B. ![]() |
||
C. If ![]() ![]() ![]() ![]() |
||
D. If ![]() ![]() ![]() ![]() ![]() |
||
E. If a function ![]() ![]() ![]() ![]() ![]() |
A. ![]() ![]() ![]() |
||
B. ![]() ![]() ![]() |
||
C. ![]() |
||
D. ![]() |
||
E. ![]() ![]() |
A. The radius of convergence is at least 1 if ![]() |
||
B. The radius of convergence is at most 1 if ![]() |
||
C. If ![]() |
||
D. If there exists ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||
E. If ![]() ![]() ![]() |
![]() ![]() |
||
A nonzero, finite number of the coefficients ![]() ![]() |
||
An infinite number of the coefficients ![]() ![]() |
A. Given any point ![]() ![]() ![]() ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() |
||
E. ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. Morera's theorem | ||
B. Cauchy's integral formula | ||
C. Poisson's integral representation | ||
D. Liouville's theorem | ||
E. Riemann mapping theorem |
A. ![]() |
||
B. ![]() ![]() ![]() ![]() ![]() |
||
C. ![]() ![]() ![]() |
||
D. ![]() |
||
E. There exists a contour ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. The singularities ![]() ![]() |
||
E. All of these choices are necessary. |
A. ![]() |
||
B. ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() ![]() |
||
E. ![]() |
A. In order for ![]() ![]() ![]() ![]() |
||
B. In order for ![]() ![]() ![]() ![]() |
||
C. In order for ![]() ![]() ![]() ![]() |
||
D. In order for ![]() ![]() ![]() ![]() |
||
E. In order for ![]() ![]() ![]() ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. ![]() |
||
E. ![]() ![]() |
A. ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. ![]() |
||
E. ![]() |
A. ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. ![]() |
||
E. ![]() |
A. In order for ![]() ![]() ![]() |
||
B. In order for ![]() ![]() ![]() |
||
C. In order for ![]() ![]() ![]() |
||
D. In order for ![]() ![]() ![]() |
||
E. In order for ![]() ![]() ![]() |
A. ![]() |
||
B. ![]() |
||
C. ![]() |
||
D. ![]() |
||
E. Both A and B |