|
A. 0 is an isolated point of |
||
|
B. 0 is a boundary point of |
||
|
C. 0 is an accumulation point of |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. The magnitude of |
||
|
B. The principle argument of |
||
|
C. The magnitude of |
||
|
D. If |
||
|
E. If |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
| E. None of these choices |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. In order for |
||
|
B. In order for |
||
|
C. In order for |
||
|
D. In order for |
||
|
E. In order for |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
| E. None of these choices |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
| E. None of these choices |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
| A. The complex exponential is periodic. | ||
| B. The complex exponential is onto (i.e. surjective). | ||
|
C. The complex exponential satisfies |
||
| D. The complex exponential is holomorphic. | ||
|
E. The complex exponential satisfies |
|
A. The annulus |
||
|
B. The annulus |
||
|
C. The punctured disc |
||
|
D. The punctured disc |
||
| E. None of these choices |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. If |
||
|
B. If |
||
|
C. If |
||
|
D. If |
||
| E. None of these choices |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. The winding number of |
|
A. In order to have |
||
|
B. In order to have |
||
|
C. In order to have |
||
|
D. In order to have |
||
|
E. In order to have |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
| A. Analytic functions which are bounded on a subset of their domain are constant on that subset. | ||
|
B. |
||
|
C. If |
||
|
D. If |
||
|
E. If a function |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. The radius of convergence is at least 1 if |
||
|
B. The radius of convergence is at most 1 if |
||
|
C. If |
||
|
D. If there exists |
||
|
E. If |
|
|
||
|
A nonzero, finite number of the coefficients |
||
|
An infinite number of the coefficients |
|
A. Given any point |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
| A. Morera's theorem | ||
| B. Cauchy's integral formula | ||
| C. Poisson's integral representation | ||
| D. Liouville's theorem | ||
| E. Riemann mapping theorem |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. There exists a contour |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. The singularities |
||
| E. All of these choices are necessary. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. In order for |
||
|
B. In order for |
||
|
C. In order for |
||
|
D. In order for |
||
|
E. In order for |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. In order for |
||
|
B. In order for |
||
|
C. In order for |
||
|
D. In order for |
||
|
E. In order for |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
| E. Both A and B |