a. 3 ![]() |
||
b. 3.5 ![]() |
||
c. 21 ![]() |
||
d. 5.5 ![]() |
a. 0.25 ![]() |
||
b. 0.40 ![]() |
||
c. 0.15 ![]() |
||
d. None of the above ![]() |
a. 0.75 ![]() |
||
b. 0.40 ![]() |
||
c. 0.15 ![]() |
||
d. None of the above ![]() |
a. {1, 2, 3, 4, 5, 6} ![]() |
||
b. {2, 4, 6} ![]() |
||
c. {1, 2, 3} ![]() |
||
d. {2, 3, 4, 5} ![]() |
a. 0.25 ![]() |
||
b. 0.9375 ![]() |
||
c. 0.75 ![]() |
||
d. 1 ![]() |
a. 0.1825 ![]() |
||
b. 0.3679 ![]() |
||
c. 0.1120 ![]() |
||
d. 0.5783 ![]() |
a. f(x1, x2, …, xn) = f1(x1)f2(x2) … fn(xn) ![]() |
||
b. f(x1, x2, …, xn) = f1(x1)+ f2(x2) + … +fn(xn) ![]() |
||
c. f(x1, x2, … , xn) = f1 (x1 x2… xn) ![]() |
||
d. None of the above ![]() |
a. Size ![]() |
||
b. Sum ![]() |
||
c. Set ![]() |
||
d. Difference ![]() |
a. 25% ![]() |
||
b. 75% ![]() |
||
c. 50% ![]() |
||
d. 10% ![]() |
a. P(X = k) = (1 - p)k ![]() |
||
b. P(X = k) = k! ∙ p ∙ (1 - p)k-1 ![]() |
||
c. P(X = k) = pk-1 ∙ (1 - p) ![]() |
||
d. P(X = k) = p ∙ (1 - p)k-1 ![]() |
a. E(X + Y2) = E(X) + E(Y2) ![]() |
||
b. E(X ∙ Y1/2) = E(X) ∙ E(Y1/2) ![]() |
||
c. E(X ∙ c) = c E(X) ![]() |
||
d. E(X1/2) = (E(X)) 1/2 ![]() |
a. E(X) + E(Y) ![]() |
||
b. E(X ) ∙ E(Y) ![]() |
||
c. E(X)/E(Y) ![]() |
||
d. E(X) - E(Y) ![]() |
a. 1 ![]() |
||
b. 10 ![]() |
||
c. 25 ![]() |
||
d. 5 ![]() |
a. 4 ![]() |
||
b. 5 ![]() |
||
c. 6 ![]() |
||
d. 12 ![]() |
a. 0.11 ![]() |
||
b. 0.89 ![]() |
||
c. 0.19 ![]() |
||
d. 0.55 ![]() |
a. 0.4 ![]() |
||
b. 0.1 ![]() |
||
c. 0.2 ![]() |
||
d. 0.5 ![]() |
a. The probability distribution of n so that the nth trial (out of n trials) is the first success. ![]() |
||
b. The number of successes in a sequence of n trials. ![]() |
||
c. The number of successes in a sequence of trials, before a specified (non-random) number r of failures occurs ![]() |
||
d. None of the above ![]() |
a. An experiment whose outcome is random continuous numbers between 0 and 1 ![]() |
||
b. An experiment whose outcome is random integer numbers ![]() |
||
c. An experiment whose outcome is random and can be either of two possible outcomes, "success" and "failure" ![]() |
||
d. An experiment whose outcome is random and can be either of three possible outcomes ![]() |
a. 0.08 ![]() |
||
b. 0.40 ![]() |
||
c. 0.16 ![]() |
||
d. 0.60 ![]() |
a. 1/ λ2 ![]() |
||
b. 1/ λ ![]() |
||
c. λ2 ![]() |
||
d. λ ![]() |
a. Poisson distribution ![]() |
||
b. Gamma distribution ![]() |
||
c. Exponential distribution ![]() |
||
d. Normal distribution ![]() |
a. Binomial distribution ![]() |
||
b. Poisson distribution ![]() |
||
c. Exponential distribution ![]() |
||
d. Geometric distribution ![]() |
a. The number of children taller than 4 ft in a family ![]() |
||
b. The number of cars in a family ![]() |
||
c. The number of children in a family ![]() |
||
d. The average height of children in a family ![]() |
a. f(x, λ) = λ e- λx ![]() |
||
b. f(x, λ) = e- λx ![]() |
||
c. f(x, λ) = λ e- x ![]() |
||
d. f(x, λ) =1/ λ e- λx ![]() |
a. E(X) + E(Y) ![]() |
||
b. E(X) - E(Y) ![]() |
||
c. E(X) ∙ E(Y) ![]() |
||
d. X - Y ![]() |
a. V(X/Y) ![]() |
||
b. E(X + Y)2 ![]() |
||
c. V(X) + V(Y) ![]() |
||
d. V(X - Y) ![]() |
a. V(C ∙ X) = C2V(X) ![]() |
||
b. V(X + Y) = V(X) + V(Y) ![]() |
||
c. V(X - Y) = V(X) - V(Y) ![]() |
||
d. V(X + C) = V(X) ![]() |
a. 0.375 ![]() |
||
b. 0.25 ![]() |
||
c. 0.5 ![]() |
||
d. 0.625 ![]() |
a. 0.011 ![]() |
||
b. 0.122 ![]() |
||
c. 0.082 ![]() |
||
d. 0.046 ![]() |
a. 5/8 ![]() |
||
b. 1/4 ![]() |
||
c. 2/7 ![]() |
||
d. 3/8 ![]() |
a. 99% ![]() |
||
b. 17% ![]() |
||
c. 95% ![]() |
||
d. 13% ![]() |
a. 99.99% ![]() |
||
b. 95% ![]() |
||
c. 17% ![]() |
||
d. 13% ![]() |
a. 0.77 ![]() |
||
b. 0.85 ![]() |
||
c. 0.70 ![]() |
||
d. 0.55 ![]() |
a. 0.1 ![]() |
||
b. 0.9 ![]() |
||
c. 0.17 ![]() |
||
d. 0.83 ![]() |
a. 0.6321 ![]() |
||
b. 0.1242 ![]() |
||
c. 0.8921 ![]() |
||
d. 0.1012 ![]() |
a. 10 ![]() |
||
b. 5 ![]() |
||
c. 15 ![]() |
||
d. 20 ![]() |
a. 7.20 ![]() |
||
b. 2.67 ![]() |
||
c. 4.50 ![]() |
||
d. 1.77 ![]() |
a. 0.01 ![]() |
||
b. 0.1 ![]() |
||
c. 0.08 ![]() |
||
d. 0.05 ![]() |
a. 0.5 ![]() |
||
b. 0.08 ![]() |
||
c. 0.18 ![]() |
||
d. 0.04 ![]() |
a. 13 ![]() |
||
b. 26 ![]() |
||
c. 36 ![]() |
||
d. 8 ![]() |
a. 6 ![]() |
||
b. 26 ![]() |
||
c. 36 ![]() |
||
d. 16 ![]() |
a. 0.1725 ![]() |
||
b. 0.2125 ![]() |
||
c. 0.1125 ![]() |
||
d. 0.1250 ![]() |
a. 0.25 ![]() |
||
b. 0.2125 ![]() |
||
c. 0.0625 ![]() |
||
d. 0.1775 ![]() |
a. 0.005 ![]() |
||
b. 0.12 ![]() |
||
c. 0.02 ![]() |
||
d. 0.05 ![]() |
a. 0.11 ![]() |
||
b. 0.44 ![]() |
||
c. 0.29 ![]() |
||
d. 0.35 ![]() |
a. 0.087 ![]() |
||
b. 0.352 ![]() |
||
c. 0.123 ![]() |
||
d. 0.197 ![]() |
a. 1.3% ![]() |
||
b. 2.25% ![]() |
||
c. 0.78% ![]() |
||
d. 0.13% ![]() |
a. 60% ![]() |
||
b. 50% ![]() |
||
c. 75% ![]() |
||
d. 65% ![]() |
a. 0.0228 ![]() |
||
b. 0.0456 ![]() |
||
c. 0.0114 ![]() |
||
d. 0.0765 ![]() |
a. 57% ![]() |
||
b. 68% ![]() |
||
c. 32% ![]() |
||
d. 43% ![]() |
a. 0.0126 ![]() |
||
b. 0.0523 ![]() |
||
c. 0.0472 ![]() |
||
d. 0.0052 ![]() |
a. 0.60 ![]() |
||
b. 0.25 ![]() |
||
c. 0.82 ![]() |
||
d. 0.50 ![]() |
a. 0.04 ![]() |
||
b. 0.2 ![]() |
||
c. 5 ![]() |
||
d. 25 ![]() |
a. 4 ![]() |
||
b. 2 ![]() |
||
c. 1 ![]() |
||
d. 0.5 ![]() |
a. 0.231 ![]() |
||
b. 0.821 ![]() |
||
c. 0.184 ![]() |
||
d. 0.124 ![]() |