|
a. 0.03 |
||
|
b. 0.3 |
||
|
c. 5 |
||
|
d. 1 |
|
a. 2,300-4,000 |
||
|
b. 500-1,000 |
||
|
c. 105 -106 |
||
|
d. 50,000-100,000 |
|
a. The friction factor decreases. |
||
|
b. The friction factor is kept constant. |
||
|
c. The friction factor increases. |
||
|
d. None of the above |
|
a. M L-1 |
||
|
b. M L-1T-2 |
||
|
c. M2L-1T |
||
|
d. M-1T-2 |
|
a. Thermal conductivity |
||
|
b. Wind velocity |
||
|
c. Atmospheric pressure |
||
|
d. Relative humidity |
|
a. The ratio of inertial forces to viscous forces. |
||
|
b. The ratio of surface tension to inertial forces. |
||
|
c. The ratio of inertial forces to gravitational forces. |
||
|
d. The ratio of momentum diffusivity to thermal diffusivity. |
|
a. The ratio of inertial forces ρV2/L to viscous forces μV/L2 |
||
|
b. The ratio of surface tension to inertial forces |
||
|
c. The ratio of gravitational force to fluid’s inertia |
||
|
d. The ratio of momentum diffusivity to thermal diffusivity |
|
a. Movement of fluid slowly in layers in a pipe, without much mixing among the layers |
||
|
b. A flow whose Reynolds number exceeds 2300 |
||
|
c. Movements of fluid are chaotic with significant mixing |
||
|
d. None of the above |
|
a. Pressure is the force divided by the area over which the force is applied. |
||
|
b. Pressure is equal to surface tension. |
||
|
c. Pressure is the force times the area over which the force is applied. |
||
|
d. Pressure is equal to the object’s acceleration times its mass. |
|
a. Reynolds number |
||
|
b. Weber number |
||
|
c. Prandtl number |
||
|
d. Froude number |
|
a. The locus of points of all the fluid particles that have passed through a given point |
||
|
b. A family of curves, which are normal to the velocity vector of the flow |
||
|
c. A family of curves that track the trajectories of fluid particles |
||
|
d. A family of curves that are instantaneously tangent to the velocity vector of the flow |
|
a. Pressure coefficient |
||
|
b. Mach number M |
||
|
c. Gas constant R |
||
|
d. Friction factor f |
|
a. V2/Lg |
||
|
b. µ VL/ρ |
||
|
c. VL/σ |
||
|
d. None of the above |
|
a. Streamlines cannot cross each other. |
||
|
b. Streamlines provide a snapshot of the entire flow field. |
||
|
c. Streamlines track trajectories of fluid particles. |
||
|
d. The tangent at each point on a streamline is the direction of the velocity vector at that point. |
|
a. The streamwise velocity component satisfies uz = 0. |
||
|
b. “Boundary layers” from opposite sides of the pipe are separated and continue growing. |
||
|
c. The radial component of the velocity is zero. |
||
|
d. The entrance length depends on the Reynolds number. |
|
a. Surface tension is responsible for the weight of liquid droplets. |
||
|
b. Surface tension is measured in forces per unit length or of energy per unit area. |
||
|
c. Surface tension is responsible for buoyancy. |
||
|
d. None of the above |
|
a. In the laminar zone, friction factor decreases as the Reynolds number increases. |
||
|
b. In the turbulent zone, friction factor increases as the relative roughness (D/ε) increases. |
||
|
c. Within the zone of complete turbulence, friction factor is independent of Reynolds number. |
||
|
d. As relative roughness increases, the boundary of the complete turbulence zone shifts to the right. |
|
a. Viscosity of a fluid depends strongly on its temperature. |
||
|
b. Viscosity measures the friction between the fluid and the wall. |
||
|
c. Shear stress is independent of viscosity. |
||
|
d. For a given rate of angular deformation of a fluid, shear stress is inversely proportional to viscosity. |
|
a. 15.7 kPa |
||
|
b. 25.3 kPa |
||
|
c. 3.21 kPa |
||
|
d. 1.24 kPa |
|
a. 1 m |
||
|
b. 60 cm |
||
|
c. 6 m |
||
|
d. 20 cm |
|
a. 331.3 m/s |
||
|
b. 13.2 m/s |
||
|
c. 1520.2 m/s |
||
|
d. 212.5 m/s |
|
a. 1.14 108 lbf |
||
|
b. 4.14 108 lbf |
||
|
c. 6.14 108 lbf |
||
|
d. 9.14 108 lbf |
|
a. 0.06 m3/s |
||
|
b. 1.2 m3/s |
||
|
c. 0.01 m3/s |
||
|
d. 0.12 cm3/s |
|
a. 3 |
||
|
b. 5 |
||
|
c. 12 |
||
|
d. -2 |
|
a. a = b |
||
|
b. a = 2b |
||
|
c. a = -b |
||
|
d. a = -2b |
|
a. -3 |
||
|
b. 2 |
||
|
c. 32 |
||
|
d. -8 |
|
a. Supersonic |
||
|
b. Both turbulent and laminar |
||
|
c. Turbulent |
||
|
d. Laminar |
|
a. 1.55 10-4 m2/s |
||
|
b. 1.25 10-4 m2/s |
||
|
c. 0.5 10-4 m2/s |
||
|
d. 1.55 10-6 m2/s |
|
a. 367 N/m2 |
||
|
b. 65 N/m2 |
||
|
c. 550 N/m2 |
||
|
d. 107 N/m2 |
|
a. 100 m/s |
||
|
b. 400 m/s |
||
|
c. 200 m/s |
||
|
d. 50 m/s |
|
a. 15 m |
||
|
b. 50 m |
||
|
c. 12 m |
||
|
d. 8 m |
|
a. 11 µ |
||
|
b. 0 |
||
|
c. µ |
||
|
d. 2 µ |
|
a. 62 µ |
||
|
b. 0 |
||
|
c. 22µ |
||
|
d. 38 µ |
|
a. µ |
||
|
b. 10µ |
||
|
c. 20πµ |
||
|
d. 10πµ |
|
a. 0.5 g |
||
|
b. 2.6 g |
||
|
c. 5.2 g |
||
|
d. 7.9 g |
|
a. 10 s |
||
|
b. 12 s |
||
|
c. 7 s |
||
|
d. 20 s |
|
a. 1.26 N |
||
|
b. 5.23 N |
||
|
c. 2.12 N |
||
|
d. 0.12 N |
|
a. 5 m/s |
||
|
b. 1 m/s |
||
|
c. 2 m/s |
||
|
d. 0.5 m/s |
|
a. 31.1 kN |
||
|
b. 27.2 kN |
||
|
c. 19.6 kN |
||
|
d. 59.5 kN |
|
a. 7.6 mm |
||
|
b. 5.3 mm |
||
|
c. 1.2 mm |
||
|
d. 8.7 mm |
|
a. 0.15 psi |
||
|
b. 1.24 psi |
||
|
c. 16.3 psi |
||
|
d. 350 psi |
|
a. 1.2 l/s |
||
|
b. 3.9 l/s |
||
|
c. 45.1 l/s |
||
|
d. 0.2 l/s |
|
a. 0.0004 |
||
|
b. 0.004 |
||
|
c. 0.04 |
||
|
d. 0.4 |
|
a. 119 Pa/m |
||
|
b. 1049 Pa/m |
||
|
c. 22 Pa/m |
||
|
d. 11 Pa/m |
|
a. 5.3 mPa s |
||
|
b. 0.005 cP |
||
|
c. 5.3 Pa s |
||
|
d. 5.3 P |
|
a. 0.3 atm |
||
|
b. 0.03 atm |
||
|
c. 3 Pa |
||
|
d. 30 Pa |
|
a. Mf D v/μ |
||
|
b. Mf/(D μ) |
||
|
c. Mf v ρ/μ |
||
|
d. Mf ρ D/μ |
|
a. 1.22 |
||
|
b. 2.0 |
||
|
c. 0.52 |
||
|
d. 7 |
|
a. 1 |
||
|
b. 2 |
||
|
c. 1.5 |
||
|
d. 5 |
Use this expression to calculate the product τrz 2 π R (where τrz = μ dv/dr) for a Newtonian fluid evaluated at the pipe wall. Which of the following expressions matches your result? |
a. dP/dz |
||
|
b. 2 π R dP/dz |
||
|
c. μ dP/dz |
||
|
d. R2π dP/dz |
|
a. 225 atm |
||
|
b. 0.225 atm |
||
|
c. 2250 Pa |
||
|
d. 225 Pa |
|
a. 0.2 Pa s |
||
|
b. 1 cP |
||
|
c. 0.2 cP |
||
|
d. 1 Pa s |
|
a. 112 |
||
|
b. 225 |
||
|
c. 325 |
||
|
d. 176 |
|
a. 40 |
||
|
b. 33 |
||
|
c. 32 |
||
|
d. 35 |
|
a. 280, 10 |
||
|
b. 210, 10 |
||
|
c. 280, 20 |
||
|
d. 210, 20 |