a. Turbulent ![]() |
||
b. Laminar ![]() |
||
c. Transition between turbulent and laminar ![]() |
||
d. None of the above ![]() |
a. C1 ∙ y2 + C2 ∙ y + C3 ![]() |
||
b. C1 ∙ y + C2 ![]() |
||
c. C1 ![]() |
||
d. C1 ∙ y3 + C2 ∙ y + C3 ![]() |
a. Much larger than 1 ![]() |
||
b. Approximately 1 ![]() |
||
c. Smaller than 0.1 ![]() |
||
d. Larger than 1 ![]() |
a. The thickness of the thermal boundary layer is less than the thickness of the momentum boundary layer. ![]() |
||
b. The thickness of the thermal boundary layer is greater than the thickness of the momentum boundary layer. ![]() |
||
c. The thickness of the thermal boundary layer is equal to the thickness of the momentum boundary layer. ![]() |
||
d. None of the above ![]() |
a. 33.2 ![]() |
||
b. 3.32 ![]() |
||
c. 0.332 ![]() |
||
d. 1 ![]() |
a. Conduction ![]() |
||
b. Convection ![]() |
||
c. Radiation ![]() |
||
d. All of the above ![]() |
a. Fourier’s law ![]() |
||
b. First law of thermodynamics ![]() |
||
c. Newton’s second law ![]() |
||
d. None of the above ![]() |
a. 200 W/m2 ![]() |
||
b. 500 W/m2 ![]() |
||
c. 100 W/m2 ![]() |
||
d. 800 W/m2 ![]() |
a. Only initial conditions ![]() |
||
b. Both boundary and initial conditions ![]() |
||
c. Only boundary conditions ![]() |
||
d. None of the above ![]() |
a. Only initial conditions ![]() |
||
b. Both boundary and initial conditions ![]() |
||
c. Only boundary conditions ![]() |
||
d. None of the above ![]() |
a. Buoyancy and acceleration ![]() |
||
b. Buoyancy and gravitation ![]() |
||
c. Buoyancy and viscous ![]() |
||
d. Viscous and friction ![]() |
a. A layer on top of the turbulent boundary layer ![]() |
||
b. A thin region near the plate surface in which heat and mass transfer are similar to those in a laminar flow ![]() |
||
c. A layer under the wall ![]() |
||
d. None of the above ![]() |
a. A factor used to solve two- and three-dimensional conduction problems with standardized geometries ![]() |
||
b. A factor representing convective heat transfer ![]() |
||
c. A factor used to calculate radiation heat transfer between two black bodies ![]() |
||
d. None of the above ![]() |
a. Turbulent flow ![]() |
||
b. Bulk movements of the fluid induced by density differences in the fluid occurring due to temperature gradients ![]() |
||
c. Bulk movements of the fluid induced by pressure gradients in the fluid ![]() |
||
d. Forced movements of the fluid induced by external pumps ![]() |
a. The ratio of the fin heat transfer rate to the heat transfer rate of the object if it had no fin ![]() |
||
b. The ratio of the actual heat loss to the heat loss if the fin was at the base temperature ![]() |
||
c. The ratio of fin area to the base area ![]() |
||
d. The ratio of the fin heat transfer rate to the heat transfer by convection ![]() |
a. The ratio of the fin heat transfer rate to the heat transfer rate of the object if it had no fin ![]() |
||
b. The ratio of the actual heat loss to the heat loss if the fin was at the base temperature ![]() |
||
c. The ratio of fin area to the base area ![]() |
||
d. The ratio of the fin heat transfer rate to the heat transfer by convection ![]() |
a. The ratio of viscous forces and inertia forces ![]() |
||
b. The ratio of gravitation forces and forced convection ![]() |
||
c. The ratio of buoyant forces to acceleration forces acting on a fluid ![]() |
||
d. The ratio of buoyant forces to viscous forces acting on a fluid ![]() |
a. The ratio of momentum diffusivity to thermal diffusivity ![]() |
||
b. The ratio of convective to conductive heat transfer across a boundary ![]() |
||
c. The ratio of convective heat transfer coefficient to conduction heat transfer coefficient ![]() |
||
d. The ratio of momentum transfer to heat transfer ![]() |
a. 50-1000 W/m2K ![]() |
||
b. 1-5 W/m2K ![]() |
||
c. 0.1-1 W/m2K ![]() |
||
d. 104-105 W/m2K ![]() |
a. 50-104 W/m2K ![]() |
||
b. 1-5 W/m2K ![]() |
||
c. 0.1-1 W/m2K ![]() |
||
d. 104-105 W/m2K ![]() |
a. 5-10 W/m2K ![]() |
||
b. 1-5 W/m2K ![]() |
||
c. 0.1-1 W/m2K ![]() |
||
d. 103-105 W/m2K ![]() |
a. R = 1/k + 1/S ![]() |
||
b. R = k ∙ S ![]() |
||
c. R = 1/(k + S) ![]() |
||
d. R ∙ S ∙ k = 1 ![]() |
a. 15 K/W ![]() |
||
b. 50 K/W ![]() |
||
c. 5 K/W ![]() |
||
d. 1 K/W ![]() |
a. 1/h2 ![]() |
||
b. 1/h ![]() |
||
c. L/k ![]() |
||
d. k/L ![]() |
a. T(x, y) = U(x) ∙ V(y) ![]() |
||
b. T(x, y) = U(x) + V(y) ![]() |
||
c. T(x, y) = U(x/y) ![]() |
||
d. T(x, y) = U(x) - V(y) ![]() |
a. q’’ = h (Ts - T∞) ![]() |
||
b. q’’ = -k dT/dx ![]() |
||
c. Eb = σ Ts4 ![]() |
||
d. None of the above ![]() |
a. Conduction ![]() |
||
b. Film boiling ![]() |
||
c. Nucleate boiling ![]() |
||
d. Natural convection ![]() |
a. A poor heat insulator is a good heat conductor. ![]() |
||
b. A poor heat insulator is a poor heat conductor. ![]() |
||
c. A poor heat insulator is a good heat conductor. ![]() |
||
d. None of the above ![]() |
a. All forms of matter emit radiation. ![]() |
||
b. Transport of thermal radiation energy requires matter. ![]() |
||
c. Temperature is the driving force for thermal radiation. ![]() |
||
d. Radiation energy varies continuously with wavelength. ![]() |
a. The ratio of momentum diffusivity to thermal diffusivity ![]() |
||
b. The ratio of dynamic viscosity to thermal diffusivity ![]() |
||
c. The ratio of convective heat transfer coefficient to conduction heat transfer coefficient ![]() |
||
d. The ratio of momentum diffusivity to heat conduction coefficient ![]() |
a. 100 kW ![]() |
||
b. 30 kW ![]() |
||
c. 10 kW ![]() |
||
d. 5 kW ![]() |
a. 11°C ![]() |
||
b. 9°C ![]() |
||
c. 7°C ![]() |
||
d. 4°C ![]() |
a. 103 s ![]() |
||
b. 283 s ![]() |
||
c. 1043 s ![]() |
||
d. 3 s ![]() |
a. q = (T2 + T1)/(1/h1 + 1/h2 + L/k) ![]() |
||
b. q = (T2 - T1)/(1/h1 + 1/h2) ![]() |
||
c. q = (T2 + T1)/(1/h1 - 1/h2 + L/k) ![]() |
||
d. q = (T2 - T1)/(1/h1 + 1/h2 + L/k) ![]() |
a. 50 kW/m2 ![]() |
||
b. 20 kW/m2 ![]() |
||
c. 10 kW/m2 ![]() |
||
d. 100 kW/m2 ![]() |
a. 32 Btu/hr ![]() |
||
b. 50 Btu/hr ![]() |
||
c. 12 Btu/hr ![]() |
||
d. 20 Btu/hr ![]() |
a. 10-2 ![]() |
||
b. 10-1 ![]() |
||
c. 1 ![]() |
||
d. 10-3 ![]() |
a. (Q/2k) ∙ y2 + C1 ∙ y + C2 ![]() |
||
b. (Q/2k) ∙ y + C2 ![]() |
||
c. (Q/2k) ∙ y3 + C2 ![]() |
||
d. (Q/2k) ∙ y ![]() |
a. (Q/2k) ∙ y2 + C1 ∙ y + C2 ![]() |
||
b. (Q/2k) ∙ y + C2 ![]() |
||
c. (Q/2k) ∙ y2 + C2 ![]() |
||
d. (Q/2k) ∙ y ![]() |
a. 2.0 x 107Btu / hr. ft2 ![]() |
||
b. 5.0 x 107Btu / hr. ft2 ![]() |
||
c. 7.0 x 107Btu / hr. ft2 ![]() |
||
d. 2.0 x 107Btu / hr. ft2 ![]() |
a. 2.5 m ![]() |
||
b. 1.5 m ![]() |
||
c. 0.5 m ![]() |
||
d. 0.1 m ![]() |
a. 1230 K ![]() |
||
b. 4500 K ![]() |
||
c. 5760 K ![]() |
||
d. 4200 K ![]() |
a. 50°C ![]() |
||
b. 250°C ![]() |
||
c. 150°C ![]() |
||
d. 100°C ![]() |
a. 100 W/(m2K) ![]() |
||
b. 225 W/(m2K) ![]() |
||
c. 50 W/(m2K) ![]() |
||
d. 355 W/(m2K) ![]() |
a. Pe= Pr2Re ![]() |
||
b. Pe = Pr.Re ![]() |
||
c. Pe = Re/Pr ![]() |
||
d. Pe = Pr/Re ![]() |
a. Ra = Pr2Gr ![]() |
||
b. Ra = Gr .Pr ![]() |
||
c. Ra = Gr/Pr ![]() |
||
d. Ra = Pr/Gr ![]() |
a. 0.3 106 J ![]() |
||
b. 1.3 109 J ![]() |
||
c. 5.3 106 J ![]() |
||
d. 2.3 109 J ![]() |
a. 2π/[ln(ro) + ln(ri)] ![]() |
||
b. 2π/[ln(ro) - ln(ri)] ![]() |
||
c. π/[ln(ro/ri)] ![]() |
||
d. 2π(ro/ri) ![]() |
a. Nucleate boiling ![]() |
||
b. Film boiling ![]() |
||
c. Transition boiling ![]() |
||
d. Natural convection ![]() |
a. 1 W/m2 ![]() |
||
b. 0.1 kW/m2 ![]() |
||
c. 100 kW/m2 ![]() |
||
d. 1 kW/m2 ![]() |