|
a. Turbulent |
||
|
b. Laminar |
||
|
c. Transition between turbulent and laminar |
||
|
d. None of the above |
|
a. C1 ∙ y2 + C2 ∙ y + C3 |
||
|
b. C1 ∙ y + C2 |
||
|
c. C1 |
||
|
d. C1 ∙ y3 + C2 ∙ y + C3 |
|
a. Much larger than 1 |
||
|
b. Approximately 1 |
||
|
c. Smaller than 0.1 |
||
|
d. Larger than 1 |
|
a. The thickness of the thermal boundary layer is less than the thickness of the momentum boundary layer. |
||
|
b. The thickness of the thermal boundary layer is greater than the thickness of the momentum boundary layer. |
||
|
c. The thickness of the thermal boundary layer is equal to the thickness of the momentum boundary layer. |
||
|
d. None of the above |
|
a. 33.2 |
||
|
b. 3.32 |
||
|
c. 0.332 |
||
|
d. 1 |
|
a. Conduction |
||
|
b. Convection |
||
|
c. Radiation |
||
|
d. All of the above |
|
a. Fourier’s law |
||
|
b. First law of thermodynamics |
||
|
c. Newton’s second law |
||
|
d. None of the above |
|
a. 200 W/m2 |
||
|
b. 500 W/m2 |
||
|
c. 100 W/m2 |
||
|
d. 800 W/m2 |
|
a. Only initial conditions |
||
|
b. Both boundary and initial conditions |
||
|
c. Only boundary conditions |
||
|
d. None of the above |
|
a. Only initial conditions |
||
|
b. Both boundary and initial conditions |
||
|
c. Only boundary conditions |
||
|
d. None of the above |
|
a. Buoyancy and acceleration |
||
|
b. Buoyancy and gravitation |
||
|
c. Buoyancy and viscous |
||
|
d. Viscous and friction |
|
a. A layer on top of the turbulent boundary layer |
||
|
b. A thin region near the plate surface in which heat and mass transfer are similar to those in a laminar flow |
||
|
c. A layer under the wall |
||
|
d. None of the above |
|
a. A factor used to solve two- and three-dimensional conduction problems with standardized geometries |
||
|
b. A factor representing convective heat transfer |
||
|
c. A factor used to calculate radiation heat transfer between two black bodies |
||
|
d. None of the above |
|
a. Turbulent flow |
||
|
b. Bulk movements of the fluid induced by density differences in the fluid occurring due to temperature gradients |
||
|
c. Bulk movements of the fluid induced by pressure gradients in the fluid |
||
|
d. Forced movements of the fluid induced by external pumps |
|
a. The ratio of the fin heat transfer rate to the heat transfer rate of the object if it had no fin |
||
|
b. The ratio of the actual heat loss to the heat loss if the fin was at the base temperature |
||
|
c. The ratio of fin area to the base area |
||
|
d. The ratio of the fin heat transfer rate to the heat transfer by convection |
|
a. The ratio of the fin heat transfer rate to the heat transfer rate of the object if it had no fin |
||
|
b. The ratio of the actual heat loss to the heat loss if the fin was at the base temperature |
||
|
c. The ratio of fin area to the base area |
||
|
d. The ratio of the fin heat transfer rate to the heat transfer by convection |
|
a. The ratio of viscous forces and inertia forces |
||
|
b. The ratio of gravitation forces and forced convection |
||
|
c. The ratio of buoyant forces to acceleration forces acting on a fluid |
||
|
d. The ratio of buoyant forces to viscous forces acting on a fluid |
|
a. The ratio of momentum diffusivity to thermal diffusivity |
||
|
b. The ratio of convective to conductive heat transfer across a boundary |
||
|
c. The ratio of convective heat transfer coefficient to conduction heat transfer coefficient |
||
|
d. The ratio of momentum transfer to heat transfer |
|
a. 50-1000 W/m2K |
||
|
b. 1-5 W/m2K |
||
|
c. 0.1-1 W/m2K |
||
|
d. 104-105 W/m2K |
|
a. 50-104 W/m2K |
||
|
b. 1-5 W/m2K |
||
|
c. 0.1-1 W/m2K |
||
|
d. 104-105 W/m2K |
|
a. 5-10 W/m2K |
||
|
b. 1-5 W/m2K |
||
|
c. 0.1-1 W/m2K |
||
|
d. 103-105 W/m2K |
|
a. R = 1/k + 1/S |
||
|
b. R = k ∙ S |
||
|
c. R = 1/(k + S) |
||
|
d. R ∙ S ∙ k = 1 |
|
a. 15 K/W |
||
|
b. 50 K/W |
||
|
c. 5 K/W |
||
|
d. 1 K/W |
|
a. 1/h2 |
||
|
b. 1/h |
||
|
c. L/k |
||
|
d. k/L |
|
a. T(x, y) = U(x) ∙ V(y) |
||
|
b. T(x, y) = U(x) + V(y) |
||
|
c. T(x, y) = U(x/y) |
||
|
d. T(x, y) = U(x) - V(y) |
|
a. q’’ = h (Ts - T∞) |
||
|
b. q’’ = -k dT/dx |
||
|
c. Eb = σ Ts4 |
||
|
d. None of the above |
|
a. Conduction |
||
|
b. Film boiling |
||
|
c. Nucleate boiling |
||
|
d. Natural convection |
|
a. A poor heat insulator is a good heat conductor. |
||
|
b. A poor heat insulator is a poor heat conductor. |
||
|
c. A poor heat insulator is a good heat conductor. |
||
|
d. None of the above |
|
a. All forms of matter emit radiation. |
||
|
b. Transport of thermal radiation energy requires matter. |
||
|
c. Temperature is the driving force for thermal radiation. |
||
|
d. Radiation energy varies continuously with wavelength. |
|
a. The ratio of momentum diffusivity to thermal diffusivity |
||
|
b. The ratio of dynamic viscosity to thermal diffusivity |
||
|
c. The ratio of convective heat transfer coefficient to conduction heat transfer coefficient |
||
|
d. The ratio of momentum diffusivity to heat conduction coefficient |
|
a. 100 kW |
||
|
b. 30 kW |
||
|
c. 10 kW |
||
|
d. 5 kW |
|
a. 11°C |
||
|
b. 9°C |
||
|
c. 7°C |
||
|
d. 4°C |
|
a. 103 s |
||
|
b. 283 s |
||
|
c. 1043 s |
||
|
d. 3 s |
|
a. q = (T2 + T1)/(1/h1 + 1/h2 + L/k) |
||
|
b. q = (T2 - T1)/(1/h1 + 1/h2) |
||
|
c. q = (T2 + T1)/(1/h1 - 1/h2 + L/k) |
||
|
d. q = (T2 - T1)/(1/h1 + 1/h2 + L/k) |
|
a. 50 kW/m2 |
||
|
b. 20 kW/m2 |
||
|
c. 10 kW/m2 |
||
|
d. 100 kW/m2 |
|
a. 32 Btu/hr |
||
|
b. 50 Btu/hr |
||
|
c. 12 Btu/hr |
||
|
d. 20 Btu/hr |
|
a. 10-2 |
||
|
b. 10-1 |
||
|
c. 1 |
||
|
d. 10-3 |
|
a. (Q/2k) ∙ y2 + C1 ∙ y + C2 |
||
|
b. (Q/2k) ∙ y + C2 |
||
|
c. (Q/2k) ∙ y3 + C2 |
||
|
d. (Q/2k) ∙ y |
|
a. (Q/2k) ∙ y2 + C1 ∙ y + C2 |
||
|
b. (Q/2k) ∙ y + C2 |
||
|
c. (Q/2k) ∙ y2 + C2 |
||
|
d. (Q/2k) ∙ y |
|
a. 2.0 x 107Btu / hr. ft2 |
||
|
b. 5.0 x 107Btu / hr. ft2 |
||
|
c. 7.0 x 107Btu / hr. ft2 |
||
|
d. 2.0 x 107Btu / hr. ft2 |
|
a. 2.5 m |
||
|
b. 1.5 m |
||
|
c. 0.5 m |
||
|
d. 0.1 m |
|
a. 1230 K |
||
|
b. 4500 K |
||
|
c. 5760 K |
||
|
d. 4200 K |
|
a. 50°C |
||
|
b. 250°C |
||
|
c. 150°C |
||
|
d. 100°C |
|
a. 100 W/(m2K) |
||
|
b. 225 W/(m2K) |
||
|
c. 50 W/(m2K) |
||
|
d. 355 W/(m2K) |
|
a. Pe= Pr2Re |
||
|
b. Pe = Pr.Re |
||
|
c. Pe = Re/Pr |
||
|
d. Pe = Pr/Re |
|
a. Ra = Pr2Gr |
||
|
b. Ra = Gr .Pr |
||
|
c. Ra = Gr/Pr |
||
|
d. Ra = Pr/Gr |
|
a. 0.3 106 J |
||
|
b. 1.3 109 J |
||
|
c. 5.3 106 J |
||
|
d. 2.3 109 J |
|
a. 2π/[ln(ro) + ln(ri)] |
||
|
b. 2π/[ln(ro) - ln(ri)] |
||
|
c. π/[ln(ro/ri)] |
||
|
d. 2π(ro/ri) |
|
a. Nucleate boiling |
||
|
b. Film boiling |
||
|
c. Transition boiling |
||
|
d. Natural convection |
|
a. 1 W/m2 |
||
|
b. 0.1 kW/m2 |
||
|
c. 100 kW/m2 |
||
|
d. 1 kW/m2 |