| a. Turbulent | ||
| b. Laminar | ||
| c. Transition between turbulent and laminar | ||
| d. None of the above |
| a. C1 ∙ y2 + C2 ∙ y + C3 | ||
| b. C1 ∙ y + C2 | ||
| c. C1 | ||
| d. C1 ∙ y3 + C2 ∙ y + C3 |
| a. Much larger than 1 | ||
| b. Approximately 1 | ||
| c. Smaller than 0.1 | ||
| d. Larger than 1 |
| a. The thickness of the thermal boundary layer is less than the thickness of the momentum boundary layer. | ||
| b. The thickness of the thermal boundary layer is greater than the thickness of the momentum boundary layer. | ||
| c. The thickness of the thermal boundary layer is equal to the thickness of the momentum boundary layer. | ||
| d. None of the above |
| a. 33.2 | ||
| b. 3.32 | ||
| c. 0.332 | ||
| d. 1 |
| a. Conduction | ||
| b. Convection | ||
| c. Radiation | ||
| d. All of the above |
| a. Fourier's law | ||
| b. First law of thermodynamics | ||
| c. Newton's second law | ||
| d. None of the above |
| a. 200 W/m2 | ||
| b. 500 W/m2 | ||
| c. 100 W/m2 | ||
| d. 800 W/m2 |
| a. Only initial conditions | ||
| b. Both boundary and initial conditions | ||
| c. Only boundary conditions | ||
| d. None of the above |
| a. Only initial conditions | ||
| b. Both boundary and initial conditions | ||
| c. Only boundary conditions | ||
| d. None of the above |
| a. Buoyancy and acceleration | ||
| b. Buoyancy and gravitation | ||
| c. Buoyancy and viscous | ||
| d. Viscous and friction |
| a. A layer on top of the turbulent boundary layer | ||
| b. A thin region near the plate surface in which heat and mass transfer are similar to those in a laminar flow | ||
| c. A layer under the wall | ||
| d. None of the above |
| a. A factor used to solve two- and three-dimensional conduction problems with standardized geometries | ||
| b. A factor representing convective heat transfer | ||
| c. A factor used to calculate radiation heat transfer between two black bodies | ||
| d. None of the above |
| a. Turbulent flow | ||
| b. Bulk movements of the fluid induced by density differences in the fluid occurring due to temperature gradients | ||
| c. Bulk movements of the fluid induced by pressure gradients in the fluid | ||
| d. Forced movements of the fluid induced by external pumps |
| a. The ratio of the fin heat transfer rate to the heat transfer rate of the object if it had no fin | ||
| b. The ratio of the actual heat loss to the heat loss if the fin was at the base temperature | ||
| c. The ratio of fin area to the base area | ||
| d. The ratio of the fin heat transfer rate to the heat transfer by convection |
| a. The ratio of the fin heat transfer rate to the heat transfer rate of the object if it had no fin | ||
| b. The ratio of the actual heat loss to the heat loss if the fin was at the base temperature | ||
| c. The ratio of fin area to the base area | ||
| d. The ratio of the fin heat transfer rate to the heat transfer by convection |
| a. The ratio of viscous forces and inertia forces | ||
| b. The ratio of gravitation forces and forced convection | ||
| c. The ratio of buoyant forces to acceleration forces acting on a fluid | ||
| d. The ratio of buoyant forces to viscous forces acting on a fluid |
| a. The ratio of momentum diffusivity to thermal diffusivity | ||
| b. The ratio of convective to conductive heat transfer across a boundary | ||
| c. The ratio of convective heat transfer coefficient to conduction heat transfer coefficient | ||
| d. The ratio of momentum transfer to heat transfer |
| a. 50-1000 W/m2K | ||
| b. 1-5 W/m2K | ||
| c. 0.1-1 W/m2K | ||
| d. 104-105 W/m2K |
| a. 50-104 W/m2K | ||
| b. 1-5 W/m2K | ||
| c. 0.1-1 W/m2K | ||
| d. 104-105 W/m2K |
| a. 5-10 W/m2K | ||
| b. 1-5 W/m2K | ||
| c. 0.1-1 W/m2K | ||
| d. 103-105 W/m2K |
| a. R = 1/k + 1/S | ||
| b. R = k ∙ S | ||
| c. R = 1/(k + S) | ||
| d. R ∙ S ∙ k = 1 |
| a. 15 K/W | ||
| b. 50 K/W | ||
| c. 5 K/W | ||
| d. 1 K/W |
| a. 1/h2 | ||
| b. 1/h | ||
| c. L/k | ||
| d. k/L |
| a. T(x, y) = U(x) ∙ V(y) | ||
| b. T(x, y) = U(x) + V(y) | ||
| c. T(x, y) = U(x/y) | ||
| d. T(x, y) = U(x) - V(y) |
| a. q'' = h (Ts - T∞) | ||
| b. q'' = -k dT/dx | ||
| c. Eb = σ Ts4 | ||
| d. None of the above |
| a. Conduction | ||
| b. Film boiling | ||
| c. Nucleate boiling | ||
| d. Natural convection |
| a. A poor heat insulator is a good heat conductor. | ||
| b. A poor heat insulator is a poor heat conductor. | ||
| c. A poor heat insulator is a good heat conductor. | ||
| d. None of the above |
| a. All forms of matter emit radiation. | ||
| b. Transport of thermal radiation energy requires matter. | ||
| c. Temperature is the driving force for thermal radiation. | ||
| d. Radiation energy varies continuously with wavelength. |
| a. The ratio of momentum diffusivity to thermal diffusivity | ||
| b. The ratio of dynamic viscosity to thermal diffusivity | ||
| c. The ratio of convective heat transfer coefficient to conduction heat transfer coefficient | ||
| d. The ratio of momentum diffusivity to heat conduction coefficient |
| a. 100 kW | ||
| b. 30 kW | ||
| c. 10 kW | ||
| d. 5 kW |
| a. 11°C | ||
| b. 9°C | ||
| c. 7°C | ||
| d. 4°C |
| a. 103 s | ||
| b. 283 s | ||
| c. 1043 s | ||
| d. 3 s |
| a. q = (T2 + T1)/(1/h1 + 1/h2 + L/k) | ||
| b. q = (T2 - T1)/(1/h1 + 1/h2) | ||
| c. q = (T2 + T1)/(1/h1 - 1/h2 + L/k) | ||
| d. q = (T2 - T1)/(1/h1 + 1/h2 + L/k) |
| a. 50 kW/m2 | ||
| b. 20 kW/m2 | ||
| c. 10 kW/m2 | ||
| d. 100 kW/m2 |
| a. 32 Btu/hr | ||
| b. 50 Btu/hr | ||
| c. 12 Btu/hr | ||
| d. 20 Btu/hr |
| a. 10-2 | ||
| b. 10-1 | ||
| c. 1 | ||
| d. 10-3 |
| a. (Q/2k) ∙ y2 + C1 ∙ y + C2 | ||
| b. (Q/2k) ∙ y + C2 | ||
| c. (Q/2k) ∙ y3 + C2 | ||
| d. (Q/2k) ∙ y |
| a. (Q/2k) ∙ y2 + C1 ∙ y + C2 | ||
| b. (Q/2k) ∙ y + C2 | ||
| c. (Q/2k) ∙ y2 + C2 | ||
| d. (Q/2k) ∙ y |
| a. 2.0 x 107Btu / hr. ft2 | ||
| b. 5.0 x 107Btu / hr. ft2 | ||
| c. 7.0 x 107Btu / hr. ft2 | ||
| d. 2.0 x 107Btu / hr. ft2 |
| a. 2.5 m | ||
| b. 1.5 m | ||
| c. 0.5 m | ||
| d. 0.1 m |
| a. 1230 K | ||
| b. 4500 K | ||
| c. 5760 K | ||
| d. 4200 K |
| a. 50°C | ||
| b. 250°C | ||
| c. 150°C | ||
| d. 100°C |
| a. 100 W/(m2K) | ||
| b. 225 W/(m2K) | ||
| c. 50 W/(m2K) | ||
| d. 355 W/(m2K) |
| a. Pe= Pr2Re | ||
| b. Pe = Pr.Re | ||
| c. Pe = Re/Pr | ||
| d. Pe = Pr/Re |
| a. Ra = Pr2Gr | ||
| b. Ra = Gr .Pr | ||
| c. Ra = Gr/Pr | ||
| d. Ra = Pr/Gr |
| a. 0.3 106 J | ||
| b. 1.3 109 J | ||
| c. 5.3 106 J | ||
| d. 2.3 109 J |
| a. 2π/[ln(ro) + ln(ri)] | ||
| b. 2π/[ln(ro) - ln(ri)] | ||
| c. π/[ln(ro/ri)] | ||
| d. 2π(ro/ri) |
| a. Nucleate boiling | ||
| b. Film boiling | ||
| c. Transition boiling | ||
| d. Natural convection |
| a. 1 W/m2 | ||
| b. 0.1 kW/m2 | ||
| c. 100 kW/m2 | ||
| d. 1 kW/m2 |