|
A. 0.1 |
||
|
B. An infinetly repeating binary number |
||
|
C. 0.10011 |
||
|
D. 0.0100110011001 |
||
|
E. 1/2 |
|
A. 01111111 |
||
|
B. 111 |
||
|
C. 010101 |
||
|
D. 001111 |
||
|
E. 01101111 |
|
A. 0.01010101 |
||
|
B. 0.1 |
||
|
C. 0.2 |
||
|
D. 0.0001 |
||
|
E. 0.11111... |
|
A. 0.008% |
||
|
B. 0.01 % |
||
|
C. 0.00008% |
||
|
D. 0.1% |
||
|
E. 0.0008% |
|
A. 73.0770 |
||
|
B. -73.0770 |
||
|
C. -73.0712 |
||
|
D. -7.30712 |
||
|
E. -69.4662 |
|
A. 4% |
||
|
B. 1% |
||
|
C. 40% |
||
|
D. 0.04% |
||
|
E. 0.004% |
| time (seconds) |
f(t) |
| 0.45 |
0.71 |
| 0.50 |
0.693 |
| 0.53 |
0.685 |
| 0.56 |
0.681 |
| 0.59 |
0.649 |
|
A. 1.33 |
||
|
B. 4.44 |
||
|
C. -0.13333 |
||
|
D. -0.26666 |
||
|
E. 5.55 |
|
A. 0.701 |
||
|
B. 0.843 |
||
|
C. 0.780 |
||
|
D. 0.521 |
||
|
E. 0.743 |
|
A. 0.1, 0.832 |
||
|
B. 0.575, 1 |
||
|
C. 0.1, 0.575 |
||
|
D. 0.1, 0.3375 |
||
|
E. 3.86, -2.18 |
|
A. 0.144 |
||
|
B. 0.235 |
||
|
C. 0.802 |
||
|
D. -0.107 |
||
|
E. 0.289 |
|
A. 1.87 |
||
|
B. 1.25 |
||
|
C. 2.85 |
||
|
D. 1.25 |
||
|
E. 2.43 |
|
A. 1.43 |
||
|
B. 1.25 |
||
|
C. 1.87 |
||
|
D. 2.35 |
||
|
E. 2.85 |
|
A. [0.432; 0.241; 0.527] |
||
|
B. [0.482; 0.241; 0.597] |
||
|
C. [0.582; 0.241; 0.597] |
||
|
D. [0.482; 0.241; 0.517] |
||
|
E. [0.430; 0.211; 0.527] |
|
A. [14.1, 2.5, 2.7; 0, 47.639716, -14.385106; 0, 0, -75.544487] |
||
|
B. [14.1, 2.5, 2.7; 0, 47.539716, -14.375106; 0, 0, -75.544487] |
||
|
C. [14.1, 2.5, 2.7; 0, -47.639716, -14.385106; 0, 0, -75.544487] |
||
|
D. [14.1, 2.5, 2.7; 0, 47.639716, -14.385106; 1, 0, -75.544487] |
||
|
E. [14.1, 2.5, 2.7; 0, 47.639716, -14.385106; 0, 0, 75.544487] |
|
A. [0.825; 0.0399; 0.1962] |
||
|
B. [0.835; 0.0391; 0.0922] |
||
|
C. [0.342; 0.198; 0.0578] |
||
|
D. [0.825; 0.0399; 0.0962] |
||
|
E. [0.342; 0.118; 0.0578] |
|
A. [1,0,0; 0.654,1,0; 1.163,0.695,1] |
||
|
B. [1,0,0; 0.624,1,0; 1.163,0.625,1] |
||
|
C. [1,0,0; 0.624,1,0; 1.143,0.625,0] |
||
|
D. [0,0,0; 0.614,0,0; 0.163,0.625,0] |
||
|
E. [1,0,0; 0.524,1,0; 1.263,0.625,1] |
| t (minutes) |
T (degrees C) |
| 10 |
41.2 |
| 40 |
46.1 |
| 60 |
49.1 |
| 90 |
39.5 |
|
A. 48.8 degrees C |
||
|
B. 45.9 degrees C |
||
|
C. 48.7 degrees C |
||
|
D. 45 degrees C |
||
|
E. 47.8 degrees C |
| Time (ms) |
Position (m) |
| 0 |
5085 |
| 200 |
5245 |
| 400 |
5301 |
| 600 |
5490 |
| 800 |
5605 |
|
A. 5395 m |
||
|
B. 5396 m |
||
|
C. 5349 m |
||
|
D. 5355 m |
||
|
E. 5400 m |
| x-position (cm) |
y-height (cm) |
| 1.3 |
2.3 |
| 3.6 |
7.1 |
| 5.8 |
11.0 |
| 17.4 |
38.0 |
|
A. 2.28, -1.09 |
||
|
B. 2.23, -1.1 |
||
|
C. 2.18, -1.11 |
||
|
D. 2.25, 1.1 |
||
|
E. 2, 0 |
| x-position (cm) |
y-height (cm) |
| 1.3 |
2.3 |
| 3.6 |
7.1 |
| 5.8 |
11.0 |
| 17.4 |
38.0 |
|
A. -3.1, 0.5 |
||
|
B. 2.12, 0.5 |
||
|
C. 1.09, 2.2 |
||
|
D. 3.12, 0.484 |
||
|
E. -1.1, 2.2 |
|
A. 4.962948 |
||
|
B. 4.696419 |
||
|
C. 4.7053758 |
||
|
D. 3.1369172 |
||
|
E. 3.1368487 |
| Step Size h |
Integral |
| 0.2 |
689 |
| 0.1 |
611 |
| 0.05 |
581 |
| 0.01 |
567 |
|
A. 689 |
||
|
B. 559 |
||
|
C. 573 |
||
|
D. 502 |
||
|
E. 599 |
|
A. 107 J |
||
|
B. 212 J |
||
|
C. 221 J |
||
|
D. 109 J |
||
|
E. 215 J |
| Q(t) (gal/min) |
t (min) |
| 5.3 |
0 |
| 5.8 |
90 |
| 6.1 |
100 |
| 6.5 |
159 |
| 4.2 |
240 |
| 4.7 |
280 |
| 5.0 |
300 |
|
A. 1629 gal |
||
|
B. 1815 gal |
||
|
C. 1640 gal |
||
|
D. 1840 gal |
||
|
E. 1722 gal |
| Step Size h |
Integral |
| 0.2 |
489 |
| 0.1 |
415 |
| 0.05 |
391 |
| 0.01 |
375 |
|
A. 1% |
||
|
B. 10% |
||
|
C. 15% |
||
|
D. 20% |
||
|
E. 5% |
|
A. 312 |
||
|
B. 333 |
||
|
C. 320 |
||
|
D. 342 |
||
|
E. 422 |
|
A. 32 |
||
|
B. 31 |
||
|
C. 22 |
||
|
D. 43 |
||
|
E. 37 |
|
A. 46 |
||
|
B. 98 |
||
|
C. 81 |
||
|
D. 92 |
||
|
E. 23 |
|
A. Conjunct |
||
|
B. Adjoint |
||
|
C. Complex conjugate |
||
|
D. Inverse |
||
|
E. Diagonalized form |
|
A. Finite elements handle curved boundaries more efficiently than finite difference methods. |
||
|
B. Finite elements do not work at all for 1-d problems. |
||
|
C. Finite element methods are always faster than finite difference methods for higher dimensional problems. |
||
|
D. Finite element methods require less user intervention for multidimensional methods. |
||
|
E. Finite element methods are inherently more accurate for multidimensional problems. |
|
A. 1 |
||
|
B. pi |
||
|
C. e^pi |
||
|
D. pi/2 |
||
|
E. Zero |
|
A. It describes heat conduction. |
||
|
B. It interconverts between time and frequency domains. |
||
|
C. It may only be applied to real signals. |
||
|
D. It may only be applied to complex signals. |
||
|
E. None of the above |
|
A. Strang |
||
|
B. Fourier |
||
|
C. Russel |
||
|
D. Galerkin |
||
|
E. Helmholtz |