| A. 0.1 | ||
| B. An infinetly repeating binary number | ||
| C. 0.10011 | ||
| D. 0.0100110011001 | ||
| E. 1/2 |
| A. 01111111 | ||
| B. 111 | ||
| C. 010101 | ||
| D. 001111 | ||
| E. 01101111 |
| A. 0.01010101 | ||
| B. 0.1 | ||
| C. 0.2 | ||
| D. 0.0001 | ||
| E. 0.11111... |
| A. 0.008% | ||
| B. 0.01 % | ||
| C. 0.00008% | ||
| D. 0.1% | ||
| E. 0.0008% |
| A. 73.0770 | ||
| B. -73.0770 | ||
| C. -73.0712 | ||
| D. -7.30712 | ||
| E. -69.4662 |
| A. 4% | ||
| B. 1% | ||
| C. 40% | ||
| D. 0.04% | ||
| E. 0.004% |
|
time (seconds) |
f(t) |
|
0.45 |
0.71 |
|
0.50 |
0.693 |
|
0.53 |
0.685 |
|
0.56 |
0.681 |
|
0.59 |
0.649 |
| A. 1.33 | ||
| B. 4.44 | ||
| C. -0.13333 | ||
| D. -0.26666 | ||
| E. 5.55 |
| A. 0.701 | ||
| B. 0.843 | ||
| C. 0.780 | ||
| D. 0.521 | ||
| E. 0.743 |
| A. 0.1, 0.832 | ||
| B. 0.575, 1 | ||
| C. 0.1, 0.575 | ||
| D. 0.1, 0.3375 | ||
| E. 3.86, -2.18 |
| A. 0.144 | ||
| B. 0.235 | ||
| C. 0.802 | ||
| D. -0.107 | ||
| E. 0.289 |
| A. 1.87 | ||
| B. 1.25 | ||
| C. 2.85 | ||
| D. 1.25 | ||
| E. 2.43 |
| A. 1.43 | ||
| B. 1.25 | ||
| C. 1.87 | ||
| D. 2.35 | ||
| E. 2.85 |
| A. [0.432; 0.241; 0.527] | ||
| B. [0.482; 0.241; 0.597] | ||
| C. [0.582; 0.241; 0.597] | ||
| D. [0.482; 0.241; 0.517] | ||
| E. [0.430; 0.211; 0.527] |
| A. [14.1, 2.5, 2.7; 0, 47.639716, -14.385106; 0, 0, -75.544487] | ||
| B. [14.1, 2.5, 2.7; 0, 47.539716, -14.375106; 0, 0, -75.544487] | ||
| C. [14.1, 2.5, 2.7; 0, -47.639716, -14.385106; 0, 0, -75.544487] | ||
| D. [14.1, 2.5, 2.7; 0, 47.639716, -14.385106; 1, 0, -75.544487] | ||
| E. [14.1, 2.5, 2.7; 0, 47.639716, -14.385106; 0, 0, 75.544487] |
| A. [0.825; 0.0399; 0.1962] | ||
| B. [0.835; 0.0391; 0.0922] | ||
| C. [0.342; 0.198; 0.0578] | ||
| D. [0.825; 0.0399; 0.0962] | ||
| E. [0.342; 0.118; 0.0578] |
| A. [1,0,0; 0.654,1,0; 1.163,0.695,1] | ||
| B. [1,0,0; 0.624,1,0; 1.163,0.625,1] | ||
| C. [1,0,0; 0.624,1,0; 1.143,0.625,0] | ||
| D. [0,0,0; 0.614,0,0; 0.163,0.625,0] | ||
| E. [1,0,0; 0.524,1,0; 1.263,0.625,1] |
|
t (minutes) |
T (degrees C) |
|
10 |
41.2 |
|
40 |
46.1 |
|
60 |
49.1 |
|
90 |
39.5 |
| A. 48.8 degrees C | ||
| B. 45.9 degrees C | ||
| C. 48.7 degrees C | ||
| D. 45 degrees C | ||
| E. 47.8 degrees C |
|
Time (ms) |
Position (m) |
|
0 |
5085 |
|
200 |
5245 |
|
400 |
5301 |
|
600 |
5490 |
|
800 |
5605 |
| A. 5395 m | ||
| B. 5396 m | ||
| C. 5349 m | ||
| D. 5355 m | ||
| E. 5400 m |
|
x-position (cm) |
y-height (cm) |
|
1.3 |
2.3 |
|
3.6 |
7.1 |
|
5.8 |
11.0 |
|
17.4 |
38.0 |
| A. 2.28, -1.09 | ||
| B. 2.23, -1.1 | ||
| C. 2.18, -1.11 | ||
| D. 2.25, 1.1 | ||
| E. 2, 0 |
|
x-position (cm) |
y-height (cm) |
|
1.3 |
2.3 |
|
3.6 |
7.1 |
|
5.8 |
11.0 |
|
17.4 |
38.0 |
| A. -3.1, 0.5 | ||
| B. 2.12, 0.5 | ||
| C. 1.09, 2.2 | ||
| D. 3.12, 0.484 | ||
| E. -1.1, 2.2 |
| A. 4.962948 | ||
| B. 4.696419 | ||
| C. 4.7053758 | ||
| D. 3.1369172 | ||
| E. 3.1368487 |
|
Step Size h |
Integral |
|
0.2 |
689 |
|
0.1 |
611 |
|
0.05 |
581 |
|
0.01 |
567 |
| A. 689 | ||
| B. 559 | ||
| C. 573 | ||
| D. 502 | ||
| E. 599 |
| A. 107 J | ||
| B. 212 J | ||
| C. 221 J | ||
| D. 109 J | ||
| E. 215 J |
|
Q(t) (gal/min) |
t (min) |
|
5.3 |
0 |
|
5.8 |
90 |
|
6.1 |
100 |
|
6.5 |
159 |
|
4.2 |
240 |
|
4.7 |
280 |
|
5.0 |
300 |
| A. 1629 gal | ||
| B. 1815 gal | ||
| C. 1640 gal | ||
| D. 1840 gal | ||
| E. 1722 gal |
|
Step Size h |
Integral |
|
0.2 |
489 |
|
0.1 |
415 |
|
0.05 |
391 |
|
0.01 |
375 |
| A. 1% | ||
| B. 10% | ||
| C. 15% | ||
| D. 20% | ||
| E. 5% |
| A. 312 | ||
| B. 333 | ||
| C. 320 | ||
| D. 342 | ||
| E. 422 |
| A. 32 | ||
| B. 31 | ||
| C. 22 | ||
| D. 43 | ||
| E. 37 |
| A. 46 | ||
| B. 98 | ||
| C. 81 | ||
| D. 92 | ||
| E. 23 |
| A. Conjunct | ||
| B. Adjoint | ||
| C. Complex conjugate | ||
| D. Inverse | ||
| E. Diagonalized form |
| A. Finite elements handle curved boundaries more efficiently than finite difference methods. | ||
| B. Finite elements do not work at all for 1-d problems. | ||
| C. Finite element methods are always faster than finite difference methods for higher dimensional problems. | ||
| D. Finite element methods require less user intervention for multidimensional methods. | ||
| E. Finite element methods are inherently more accurate for multidimensional problems. |
| A. 1 | ||
| B. pi | ||
| C. e^pi | ||
| D. pi/2 | ||
| E. Zero |
| A. It describes heat conduction. | ||
| B. It interconverts between time and frequency domains. | ||
| C. It may only be applied to real signals. | ||
| D. It may only be applied to complex signals. | ||
| E. None of the above |
| A. Strang | ||
| B. Fourier | ||
| C. Russel | ||
| D. Galerkin | ||
| E. Helmholtz |