a. 1 Megacells | ||
b. 1 Kilocells | ||
c. 100 Teracells | ||
d. 100 Gigacells | ||
e. 1000 Teracells |
a. 17.1 +/- 0.82 mm 2 | ||
b. 17.1 +/- 0.25 mm 2 | ||
c. 17 +/- 0.5 mm 2 | ||
d. 17.1 +/- 0.06 mm 2 | ||
e. 17.1 +/- 0.63 mm 2 |
a. 13, 1.9 | ||
b. 13, 1.4 | ||
c. 12, 1.4 | ||
d. 12, 1 | ||
e. 1, 12 |
a. 2.76 +/ 0.0026 m | ||
b. 2.75 +/- 0.026 m | ||
c. 2.76 +/- 0.0015 m | ||
d. 2.76 +/- 0.029 m | ||
e. 2.76 +/- 0.0045 m |
a. 1010 | ||
b. 1012 | ||
c. 1025 | ||
d. 1031 | ||
e. 10− 3 |
a. 4.24, 0.45 | ||
b. 4.2, 0.5 | ||
c. 4.2, 0.4 | ||
d. 0.4, 4.2 | ||
e. 4.24, 0.43 |
a. 9.97, 0.11 | ||
b. 9.92, 0.3 | ||
c. 9.0, 0.2 | ||
d. 1.00, 0.1 | ||
e. 1.00, 0.15 |
a. 0.13 mm | ||
b. 0.1 mm | ||
c. 0.15 mm | ||
d. 0.2 mm | ||
e. 0.03 mm |
a. 4.2x 104 | ||
b. 4.2x 107 | ||
c. 4.2x 105 | ||
d. 2.4x 106 | ||
e. 2.4x 104 |
a. 11.2 ns | ||
b. 112 ns | ||
c. 89.2 ps | ||
d. 89.2 ns | ||
e. 11.2 fs |
a. 4x106 | ||
b. 4x103 | ||
c. 400x106 | ||
d. 4x104 | ||
e. 4x107 |
a. 1x10 8 | ||
b. 5x1010 | ||
c. 5x10 5 | ||
d. 5x1011 | ||
e. 5000 |
a. 7800 | ||
b. 14000 | ||
c. 3600 | ||
d. 1200 | ||
e. 5200 |
a. 0.5 m | ||
b. 0.6 m | ||
c. 1.0 m | ||
d. 0.75 m |
a. 1 m | ||
b. 0.75 m | ||
c. 0.5 m | ||
d. 0.8 m | ||
e. 0.95 m |
a. 0.7 m | ||
b. 0.8 m | ||
c. 0.6 m | ||
d. 0.55 m | ||
e. 0.9 m |
a. -0.057 | ||
b. -0.57 | ||
c. 0.57 | ||
d. 5.7 | ||
e. -0.0057 |
a. -0.039 | ||
b. -0.39 | ||
c. -.93 | ||
d. 3.9 | ||
e. -0.0039 |
a. 0.26 | ||
b. 0.29 | ||
c. 0.23 | ||
d. 0.30 | ||
e. 4.0 |
a. 37 | ||
b. 35 | ||
c. 39 | ||
d. 33 | ||
e. 40 |
a. 105 C | ||
b. 96 C | ||
c. 90 C | ||
d. 125 C | ||
e. 85 C |
a. 90 C | ||
b. 65 C | ||
c. 22 C | ||
d. 45 C | ||
e. 40 C |
a. 99, 2 | ||
b. 95, 11 | ||
c. 85, 17 | ||
d. 46, 68 | ||
e. 69, 45 |
a. 0.51 degrees C/s | ||
b. -0.51 degrees C/s | ||
c. 96 degrees C/s | ||
d. 1.7 degrees C/s | ||
e. -1.7 degrees C/s |
a. 15 | ||
b. 5 | ||
c. 0 | ||
d. 3 | ||
e. 20 |
a. 43 | ||
b. 39 | ||
c. 51 | ||
d. 12 | ||
e. 53 |
a. 1.4 | ||
b. 1.8 | ||
c. 1.2 | ||
d. 1.0 | ||
e. 2.0 |
a. 62 | ||
b. 68 | ||
c. 54 | ||
d. 72 | ||
e. 45 |
a. 211 | ||
b. 210 | ||
c. 122 | ||
d. 1210 | ||
e. 212 |
a. 216 | ||
b. 1610 | ||
c. 1216 | ||
d. 1016 | ||
e. 1024 |
a. 224 | ||
b. 210 | ||
c. 242 | ||
d. 1224 | ||
e. 2424 |
a. 9dB | ||
b. 27dB | ||
c. 18dB | ||
d. 12dB | ||
e. None of the above |
a. 300dB | ||
b. 56dB | ||
c. 5.4dB | ||
d. 50dB | ||
e. None of the above |
a. Is useful for comparing resistances. | ||
b. Permits current passage through a barrier. | ||
c. Measures the current bypassing a "bridge." | ||
d. Gates current flow periodically. | ||
e. None of the above. |
a. Can supply an infinite current upon demand | ||
b. Supplies a constant current regardless of voltage within practical limits | ||
c. Is the source in use at the present | ||
d. Can supply AC or DC upon demand | ||
e. Supplies current varying linearly with the output voltage |
a. Is represented by numbers ranging from 1 to 10 | ||
b. Corresponds to the output of the digital-to-analog converter | ||
c. Is represented by 10 bits of data | ||
d. Takes on discrete values over a range | ||
e. None of the above |
a. Amplitude | ||
b. Voltage | ||
c. Frequency | ||
d. Time | ||
e. Duration |
a. Low frequency signals | ||
b. Small voltages | ||
c. Small currents | ||
d. DC signals | ||
e. All of the above |
a. 2 | ||
b. 4 | ||
c. 3 | ||
d. 6 | ||
e. 1000 |
a. 10 | ||
b. 30 | ||
c. 100 | ||
d. 1000 | ||
e. 3000 |
a. Current amplitude | ||
b. Current frequency | ||
c. Voltage amplitude | ||
d. Voltage noise | ||
e. Current direction |
a. An indication to start or stop an activity | ||
b. An unexpected event | ||
c. An electrical current | ||
d. A detectable quantity used to communicate information | ||
e. None of the above |
a. Equipment malfunction | ||
b. A fluctuating digital readout | ||
c. A non-zero rest state for an analog signal | ||
d. A faulty digital readout | ||
e. None of the above |
a. An inductor in parallel with the load | ||
b. A capacitor in parallel with the load | ||
c. A capacitor in series with the load | ||
d. A rapid switch in series with the load | ||
e. None of the above |
a. An inductor in parallel with the load | ||
b. An inductor in series with the load | ||
c. A capacitor in series with the load | ||
d. A rapid switch in series with the load | ||
e. None of the above |
a. An inductor in series with the load | ||
b. A capacitor in parallel with the load | ||
c. A capacitor in series with the load | ||
d. A rapid switch in series with the load | ||
e. None of the above |
a. An inductor in series with the load | ||
b. A capacitor in parallel with the load | ||
c. An inductor in parallel with the load | ||
d. A rapid switch in series with the load | ||
e. None of the above |
a. AC current to DC current | ||
b. DC current to AC current | ||
c. Change of frequency | ||
d. Change of power consumed | ||
e. Voltage of AC current |
a. Frequency | ||
b. Period | ||
c. Frequency and period | ||
d. Duration | ||
e. Peak-to-peak, RMS, or average amplitude |
a. A signal is digitized too rapidly | ||
b. A signal is not digitized rapidly enough | ||
c. A signal is not digitized with enough amplitude resolution | ||
d. A connection is mislabeled | ||
e. All of the above |
a. Rapid or over-sampling | ||
b. Using a band-pass filter before digitization | ||
c. Adjusting the amplifier gain appropriately | ||
d. Rapid over-sampling and/or using a band-pass filter before digitization | ||
e. Labeling all inputs correctly |
a. Oscillates at 60 Hz | ||
b. Changes amplitudeand/or direction with time | ||
c. Is always positive | ||
d. Decays with time | ||
e. None of the above |
a. Is continuously variable over a range | ||
b. Takes on a finite number of discrete values | ||
c. Is measured in units of electrical current or flow rate | ||
d. Is measured by voltage | ||
e. Is determined continuously in time |
a. A reciprocal relationship f = 1/T | ||
b. A product relationship f = kT | ||
c. Counting the number of periods in a fixed time | ||
d. f = sin(T) | ||
e. None of the above |
a. Voltage drop along the conductors | ||
b. Stray signals from lightning | ||
c. Difficulty measuring voltage accurately | ||
d. Radio-frequency interference | ||
e. None of the above |
a. A reciprocal relationship T = k/f | ||
b. A product relationship f = kT | ||
c. Counting the number of periods in a fixed time | ||
d. f = sin(T) | ||
e. None of the above |
a. A drifting baseline | ||
b. A fluctuating digital readout | ||
c. A non-zero rest state for an analog signal | ||
d. A faulty digital readout | ||
e. None of the above |
a. 1.6 Watts | ||
b. 0.16 Watts | ||
c. 4 Watts | ||
d. 0.4 Watts | ||
e. 400 Watts |
a. R1+R2 + R3 | ||
b. 1/R1 + 1/R2+1/R3 | ||
c. R1xR2xR3/(R1+R2+R3) | ||
d. R1/R2 + R2/R3 + R3/R1 | ||
e. R1xR2xR3/(R2xR3 + R1xR3+R1xR2) |
a. R1 + R2 + R3 | ||
b. 1/R1 + 1/R2+1/R3 | ||
c. R1xR2xR3/(R1+R2+R3) | ||
d. R1/R2 + R2/R3 + R3/R1 | ||
e. None of the above |
a. 10 nm | ||
b. 100 nm | ||
c. 1 μ m | ||
d. 0.1 μ m | ||
e. 100 nm |
a. μ m | ||
b. mm | ||
c. nm | ||
d. cm | ||
e. fm |
a. μ m | ||
b. mm | ||
c. nm | ||
d. cm | ||
e. pm |
a. 10− 6 m | ||
b. 10− 1 m | ||
c. 10− 2 m | ||
d. 10− 3 m | ||
e. 10 6 m |
a. nm | ||
b. mm | ||
c. cm | ||
d. pm | ||
e. fm |
a. 10−9 m | ||
b. 10−3 m | ||
c. 10−2 m | ||
d. 10−12 m | ||
e. 10−15 m |
a. Reading subdivisions of gradations | ||
b. Using a magnifier | ||
c. Reading tenths of mm | ||
d. Reading tenths of cm | ||
e. Reading fractions of the entire scale |
a. mm | ||
b. pm | ||
c. nm | ||
d. μ m | ||
e. fm |
a. 107 | ||
b. 108 | ||
c. 106 | ||
d. 109 | ||
e. 1010 |
a. 10 ms | ||
b. 50 ms | ||
c. 300 ms | ||
d. 1 s | ||
e. 5 s |
a. 200 ms | ||
b. 500 ms | ||
c. 10 ms | ||
d. 50 ms | ||
e. 1 s |
a. 10 5 | ||
b. 1010 | ||
c. 1015 | ||
d. 1050 | ||
e. 1025 |
a. ps | ||
b. ns | ||
c. ms | ||
d. μ s | ||
e. fs |
a. 1 ms | ||
b. 1 x 10-9 s | ||
c. 1 x 10-23 s | ||
d. 1 x 10-5 s | ||
e. 1 x 10-60 s |
a. 3 x 10−18 s | ||
b. 3 x 10−16 s | ||
c. 3 x 10−20 s | ||
d. 3 x 10−10 s | ||
e. 3 fs |
a. 33 ft water | ||
b. 9.8 ft water | ||
c. 45 ft water | ||
d. 12 ft water | ||
e. 760 psi |
a. 0.9 atm | ||
b. 33 atm | ||
c. 1 psi | ||
d. 1.1 atm | ||
e. 1000 torr |
a. 1 atm | ||
b. 33 atm | ||
c. 1 psi | ||
d. 13 psi | ||
e. 1000 torr |
a. 9.8 lbf | ||
b. 32.2 lbf | ||
c. 0.225 lbf | ||
d. 4.448 lbf | ||
e. 0.138 lbf |
a. 0.10 Nm | ||
b. 244 Nm | ||
c. 1 Nm | ||
d. 2440 Nm | ||
e. 1220 Nm |
a. 122 Nm | ||
b. 244 Nm | ||
c. 980 Nm | ||
d. 2440 Nm | ||
e. 1220 Nm |
a. 872 torr | ||
b. 41 psi | ||
c. 1470 torr | ||
d. 1.12 atm | ||
e. 760 mm Hg |
a. 2.65 atm | ||
b. 45 psi | ||
c. 1470 torr | ||
d. 3.65 atm | ||
e. 760 mm Hg |
a. 0.124 mm | ||
b. 0.288 mm | ||
c. 0.300 mm | ||
d. 0.385 mm | ||
e. 0.060 mm |
a. 4.4 mm | ||
b. 4.4 cm | ||
c. 0.44 mm | ||
d. 0.44 m | ||
e. 0.44 μ m |
a. 1.3 mm | ||
b. 1.3 cm | ||
c. 0.44 mm | ||
d. 0.44 m | ||
e. 0.44 μ m |
a. 34 Nm | ||
b. 30 Nm | ||
c. 32 Nm | ||
d. 9.8 Nm | ||
e. 160 Nm |
a. The vendor does not specify gauge or absolute pressure. | ||
b. The vendor does not specify static of dynamic pressure. | ||
c. The vendor does not use SI units. | ||
d. The vendor claims a non-sensible specification. | ||
e. All of the above. |
a. 85 kg | ||
b. 93 kg | ||
c. 95 kg | ||
d. 100 kg | ||
e. 185 kg |
a. 188 lbm | ||
b. 37.9 lbm | ||
c. 32.2 lbm | ||
d. 225 lbm | ||
e. 204.5 lbm |
a. 118 degrees Kelvin | ||
b. The boiling point of water | ||
c. − 12 degrees Fahrenheit | ||
d. 0 degrees Centigrade | ||
e. A physical impossibility |
a. One cannot measure temperatures from a distance. | ||
b. There is no temperature measure in a vacuum. | ||
c. The reported temperature is below absolute zero. | ||
d. The temperature should be reported in degrees Kelvin. | ||
e. None of the above |
a. 273.15 degrees Kelvin | ||
b. 0 degrees Kelvin | ||
c. 212 degrees Centigrade | ||
d. 32 degerees Centigrade | ||
e. The boiling point of water |
a. A thermistor requires a current souce whereas a thermocouple does not | ||
b. A thermocouple requires a current source whereas a thermistor does not | ||
c. A thermistor is smaller | ||
d. A thermocouple requires requires precise voltage measurements | ||
e. A thermocpule consists of two thermistors |
a. Temperature-dependent resistance | ||
b. Temperature-dependent thermal conductivity | ||
c. Temperature-dependent voltage | ||
d. Temperature-dependent density | ||
e. Temperature-dependent resistance to heat transfer |
a. Temperature-dependent voltage | ||
b. Temperature-dependent resistance | ||
c. Temperature-dependent mass | ||
d. Temperature-dependent capacitance | ||
e. None of the above |
a. Thermal expansion of the liquid | ||
b. Transfer of heat from the alcohol to the glass | ||
c. The amount of alcohol in the bulb | ||
d. The color of the dye used | ||
e. Evaporation of the alcohol |
a. Differences in the thermal expansion of two different metals | ||
b. Fusion of two metals at a certain temperature | ||
c. Capacitance at the junction of two metals | ||
d. Electrtical resistance at the junction of two metals | ||
e. Inductance of a bimetal coil |
a. The specific heat capacity of the materials used in constructing the sensor | ||
b. The rate at which the sensor output is sampled | ||
c. The mass of the sensor | ||
d. The thermal conductivity of the sensor | ||
e. All of the above |
a. 98.6 | ||
b. 32 | ||
c. 40 | ||
d. 100 | ||
e. 37 |