A. Steady state ![]() |
||
B. Constant density ![]() |
||
C. Constant temperature ![]() |
||
D. Constant velocity ![]() |
||
E. Constant pressure ![]() |
A. 10 ![]() |
||
B. 100 ![]() |
||
C. 1000 ![]() |
||
D. 10,000 ![]() |
||
E. 100,000 ![]() |
A. Re ![]() |
||
B. Pr ![]() |
||
C. Gr ![]() |
||
D. St ![]() |
||
E. Nu ![]() |
A. Re ![]() |
||
B. St ![]() |
||
C. Gr ![]() |
||
D. Pr ![]() |
||
E. Sc ![]() |
A. Pr ![]() |
||
B. St ![]() |
||
C. Re ![]() |
||
D. Nu ![]() |
||
E. Gr ![]() |
A. Isentropic ![]() |
||
B. Isenthalpic ![]() |
||
C. Compressible ![]() |
||
D. Isobaric ![]() |
||
E. Isochoric ![]() |
A. Classical Thermodynamics ![]() |
||
B. Statistical Mechanics ![]() |
||
C. Kinetic Theory ![]() |
||
D. Continuum Mechanics ![]() |
||
E. Both A and D ![]() |
A. Brayton cycle ![]() |
||
B. Diesel cycle ![]() |
||
C. Rankine cycle ![]() |
||
D. Carnot cycle ![]() |
||
E. Otto cycle ![]() |
A. Pressure ![]() |
||
B. Temperature ![]() |
||
C. Specific volume ![]() |
||
D. Internal energy ![]() |
||
E. Flow rate ![]() |
A. Flow rate ![]() |
||
B. Diffusivity ![]() |
||
C. Reynolds number ![]() |
||
D. Gibbs free energy ![]() |
||
E. Location ![]() |
A. A thermodynamic cycle describes a process in which exhange of mass is used to perform work. ![]() |
||
B. A thermodynamic cycle describes a process in which pressure remains constant. ![]() |
||
C. A thermodynamic cycle describes a process in which pressure and temperature do not return to their initial values. ![]() |
||
D. A thermodynamic cycle describes a process in which net variation in state properties is non-zero. ![]() |
||
E. A thermodynamic cycle describes a process in which heat and/or work are exchanged with no net change in state variables. ![]() |
A. Net heat exchange is zero. ![]() |
||
B. Net heat input equals net work output. ![]() |
||
C. Net work input equals net heat output. ![]() |
||
D. Net work input equals net heat input. ![]() |
||
E. Both B and C ![]() |
A. Diesel cycle ![]() |
||
B. Carnot cycle ![]() |
||
C. Rankine cycle ![]() |
||
D. Reversible cycle ![]() |
||
E. Heat engine cycle ![]() |
A. Wind sock observations ![]() |
||
B. Laser doppler ![]() |
||
C. Particle imaging velocimetry ![]() |
||
D. Hot wire ![]() |
||
E. All of the above ![]() |
A. 11 mm Hg ![]() |
||
B. 55 mm Hg ![]() |
||
C. 1120 mm Hg ![]() |
||
D. -1120 mm Hg ![]() |
||
E. -112 mm Hg ![]() |
A. 87 mm Hg ![]() |
||
B. 17.5 mm Hg ![]() |
||
C. 1750 mm Hg ![]() |
||
D. -17.5 mm Hg ![]() |
||
E. -175 mm Hg ![]() |
A. 110 mm Hg ![]() |
||
B. -56 mm Hg ![]() |
||
C. -1110 mm Hg ![]() |
||
D. 1110 mm Hg ![]() |
||
E. None of the above ![]() |
A. Q is proportional to pressure drop. ![]() |
||
B. Q is inversely proportional to pressure drop. ![]() |
||
C. Q is inversely proportional to the square root of pressure drop. ![]() |
||
D. Q is proportional to the square root of pressure drop. ![]() |
||
E. None of the above ![]() |
A. 14.7 psi ![]() |
||
B. -14.7 psi ![]() |
||
C. -29.4 psi ![]() |
||
D. 0 psi ![]() |
||
E. -1 atm ![]() |
A. 0.506 kg/s ![]() |
||
B. 0.503 kg/s ![]() |
||
C. 6.5 kg/s ![]() |
||
D. 0.05 kg/s ![]() |
||
E. 0.65 kg/s ![]() |
A. 2 kg/s ![]() |
||
B. 8.1 kg/s ![]() |
||
C. 18 kg/s ![]() |
||
D. 180 kg/s ![]() |
||
E. 81 kg/s ![]() |
A. 53 ![]() |
||
B. 530 ![]() |
||
C. 5.3 ![]() |
||
D. 5300 ![]() |
||
E. 22 ![]() |
A. 32 ![]() |
||
B. 3200 ![]() |
||
C. 320 ![]() |
||
D. -32 ![]() |
||
E. 3.2 ![]() |
A. It is typically close to perfectly cylindrical. ![]() |
||
B. It is typically tapered from top to bottom. ![]() |
||
C. It is typically roughened to promote turbulence. ![]() |
||
D. It is typically notched for each flow rate increment. ![]() |
||
E. None of the above ![]() |
A. 0.2 ft3/s ![]() |
||
B. 0.4 ft3/s ![]() |
||
C. 20 ft3/s ![]() |
||
D. 2.6 ft3/s ![]() |
||
E. 1 ft3/s ![]() |
A. Pump affinity laws describe similarity to other pumps. ![]() |
||
B. Pump affinity laws describe cost versus performance. ![]() |
||
C. Pump affinity laws describe relationship of geometric variables and dynamic performance. ![]() |
||
D. Pump affinity laws describe dynamic head versus fluid viscosity. ![]() |
||
E. None of the above ![]() |
A. When vapor appears in the suction line ![]() |
||
B. When the net postive suction head at the pump input is less than the vapor pressure of the liquid ![]() |
||
C. When the liquid to be pumped begins to boil in the suction line ![]() |
||
D. All of the above ![]() |
||
E. None of the above ![]() |
A. The flow rates from the two pieces of equipment are equal. ![]() |
||
B. The total mass flow rate is the sum of the mass flow rates from each piece of equipment. ![]() |
||
C. The temperatures of the streams from each piece of equipment are equal. ![]() |
||
D. The pressures in the output streams from each piece of equipment are nearly equal. ![]() |
||
E. Both A and C ![]() |
||
F. Both B and D ![]() |
A. The flow rates are the same in 1 and 2. ![]() |
||
B. The inlet pressures are the same for 1 and 2. ![]() |
||
C. The outlet pressures are the same for 1 and 2. ![]() |
||
D. The inlet pressure of one of the pumps is equivalent to the outlet pressure of the other pump. ![]() |
||
E. Both A and D ![]() |
A. Square root of flow rate ![]() |
||
B. Cube root of flow rate ![]() |
||
C. Flow rate ![]() |
||
D. Flow rate squared ![]() |
||
E. Cube of flow rate ![]() |
A. 2.4 lb/min ![]() |
||
B. 2.4 g/s ![]() |
||
C. 2.4 kg/min ![]() |
||
D. 2.4 kg/s ![]() |
||
E. 2.4 kg/hr ![]() |
A. Produce a flow rate independent of operating speed ![]() |
||
B. Produce a flow rate independent of discharge pressure ![]() |
||
C. Produce a flow rate independent of suction head ![]() |
||
D. Usually require a relief or safety valve ![]() |
||
E. Both B and D ![]() |
A. 0.7 kW ![]() |
||
B. 0.07 kW ![]() |
||
C. 7 kW ![]() |
||
D. 70 kW ![]() |
||
E. 750 kW ![]() |
A. 0.1 kW ![]() |
||
B. 0.01 kW ![]() |
||
C. 1 kW ![]() |
||
D. 10 kW ![]() |
||
E. 100 kW ![]() |
A. 0.33 kW ![]() |
||
B. 3.3 W ![]() |
||
C. 3.3 hp ![]() |
||
D. 3.3 tons ![]() |
||
E. 3.3 kw ![]() |
A. 93% ![]() |
||
B. 85% ![]() |
||
C. 79% ![]() |
||
D. 74% ![]() |
||
E. 65% ![]() |
A. Blowers have an unconstrained exit stream, and pumps do not. ![]() |
||
B. Blowers move gases, and pumps move liquids and gases. ![]() |
||
C. Pumps pressurize liquids, and blowers move gases. ![]() |
||
D. Pumps operate at lower pressures than blowers. ![]() |
||
E. Pumps operate on incompressible fluids, and blowers operate on compressible fluids. ![]() |
A. 33.9 ft ![]() |
||
B. 3.39 ft ![]() |
||
C. 340 ft ![]() |
||
D. 3340 ft ![]() |
||
E. None of the above ![]() |
A. 3.3 Pa ![]() |
||
B. 2.2 Pa ![]() |
||
C. 2.2 kPa ![]() |
||
D. 3.7 kPa ![]() |
||
E. 440 kPa ![]() |
A. 1 psi ![]() |
||
B. 2.5 psi ![]() |
||
C. 0.25 psi ![]() |
||
D. 43 psi ![]() |
||
E. 10 psi ![]() |
A. Turbulent ![]() |
||
B. Laminar ![]() |
||
C. Transitional ![]() |
||
D. None of the above ![]() |
||
E. All of the above ![]() |
A. Remains constant ![]() |
||
B. Decreases ![]() |
||
C. Increases ![]() |
||
D. Doubles ![]() |
||
E. None of the above ![]() |
A. 5 cm ![]() |
||
B. 0.6 cm ![]() |
||
C. 2.0 cm ![]() |
||
D. 15 cm ![]() |
||
E. 7 cm ![]() |
A. 1.4 cm ![]() |
||
B. 2.5 cm ![]() |
||
C. 3.9 cm ![]() |
||
D. 5.0 cm ![]() |
||
E. 1.1 cm ![]() |
A. Presence/absence of organic chemicals in the pipe environment ![]() |
||
B. Installation cost and lifetime ![]() |
||
C. Brittleness ![]() |
||
D. Ease of corrosion ![]() |
||
E. All of the above ![]() |
A. Internal diameter ![]() |
||
B. Internal and external diameter ![]() |
||
C. External diameter (OD) and wall thickness ![]() |
||
D. External Diameter ![]() |
||
E. None of the above ![]() |
A. 0.5 atm ![]() |
||
B. 1 atm ![]() |
||
C. 0.2 atm ![]() |
||
D. 0.02 ![]() |
||
E. 5 atm ![]() |
A. 1.8 kPa ![]() |
||
B. 1800 Pa ![]() |
||
C. 17.6 Pa ![]() |
||
D. 1.16 Pa ![]() |
||
E. 0.18 Pa ![]() |
A. 24 kPa ![]() |
||
B. 90 Pa ![]() |
||
C. 900 Pa ![]() |
||
D. 9 kPa ![]() |
||
E. 45 kPa ![]() |
A. 112 kPa ![]() |
||
B. 269 Pa ![]() |
||
C. 2.69 Pa ![]() |
||
D. 524 kPa ![]() |
||
E. 262 kPa ![]() |
a. Additive ![]() |
||
b. Multiplicative ![]() |
||
c. Equal ![]() |
||
d. Related reciprocally ![]() |
A. 0.96 m2 ![]() |
||
B. 11.9 m2 ![]() |
||
C. 0.85 m2 ![]() |
||
D. 1.4 m2 ![]() |
||
E. 0.75 m2 ![]() |
A. 35°C ![]() |
||
B. 31°C ![]() |
||
C. 38°C ![]() |
||
D. 45°C ![]() |
||
E. 50°C ![]() |
A. 40°C ![]() |
||
B. 45°C ![]() |
||
C. 50°C ![]() |
||
D. 35°C ![]() |
||
E. 55°C ![]() |
A. 0.5 kg/s ![]() |
||
B. 2 kg/s ![]() |
||
C. 5 kg/s ![]() |
||
D. 1 kg/s ![]() |
||
E. 50 kg/s ![]() |
A. 715 W/m2K ![]() |
||
B. 800 W/m2K ![]() |
||
C. 615 W/m2K ![]() |
||
D. 0.715 W/m2K ![]() |
||
E. 1.43 W/m2K ![]() |
A. 60 kW ![]() |
||
B. 60 kJ/s ![]() |
||
C. 6 kW ![]() |
||
D. 6000 W ![]() |
||
E. Both A and B ![]() |
A. Parallel ![]() |
||
B. Cocurrent ![]() |
||
C. Countercurrent ![]() |
||
D. Cross flow ![]() |
||
E. Both A and B ![]() |
A. 47.5°C ![]() |
||
B. 41.6°C ![]() |
||
C. 45.3°C ![]() |
||
D. 27.5°C ![]() |
||
E. 17.5°C ![]() |
A. 6.5 ![]() |
||
B. 0.15 ![]() |
||
C. 6.0 ![]() |
||
D. 0.2 ![]() |
||
E. 10 ![]() |
A. 0.1 ![]() |
||
B. 0.027 ![]() |
||
C. 7.7 ![]() |
||
D. 7.3 ![]() |
||
E. 0.03 ![]() |
A. 60 W ![]() |
||
B. 6 W ![]() |
||
C. 600 W ![]() |
||
D. 6000 W ![]() |
||
E. 600 kW ![]() |
A. Ammonia-water. ![]() |
||
B. Lithium bromide-water. ![]() |
||
C. Lithium chloride-water. ![]() |
||
D. Water-sulfuric acid. ![]() |
||
E. Water-octane. ![]() |
A. Electricity ![]() |
||
B. Motion ![]() |
||
C. Kinetic Energy ![]() |
||
D. Heat ![]() |
||
E. Fuel oil ![]() |
A. Rankine cycle ![]() |
||
B. Diesel cycle ![]() |
||
C. Carnot cycle ![]() |
||
D. Reverse Rankine cycle ![]() |
||
E. All of the above ![]() |
A. 2.04 ![]() |
||
B. 0.49 ![]() |
||
C. 2.49 ![]() |
||
D. 0.51 ![]() |
||
E. -1.1 ![]() |
A. 54 kJ/kg ![]() |
||
B. 108 kJ/kg ![]() |
||
C. 110 kJ/kg ![]() |
||
D. 164 kJ/kg ![]() |
||
E. 208 kJ/kg ![]() |
A. 110 kJ/kg ![]() |
||
B. 54 kJ/kg ![]() |
||
C. 108 kJ/kg ![]() |
||
D. 220 kJ/kg ![]() |
||
E. 400 kJ/kg ![]() |
A. 0.54 ![]() |
||
B. 2.0 ![]() |
||
C. 1.8 ![]() |
||
D. 0.6 ![]() |
||
E. 0.25 ![]() |
A. Only for providing cooling for temperatures above 0°C ![]() |
||
B. Only for providing cooling for temperatures above 200°K ![]() |
||
C. Only for very small-scale operations ![]() |
||
D. Only for very large-scale operations ![]() |
||
E. All of the above ![]() |
A. 200% ![]() |
||
B. 100% ![]() |
||
C. 50% ![]() |
||
D. 5% ![]() |
||
E. None of the above ![]() |
A. 38% ![]() |
||
B. 58% ![]() |
||
C. 25% ![]() |
||
D. 50% ![]() |
||
E. 100% ![]() |
A. 100 years ago ![]() |
||
B. 300 years ago ![]() |
||
C. 700 years ago ![]() |
||
D. 900 years ago ![]() |
||
E. 1200 years ago ![]() |
A. ![]() ![]() |
||
B. ![]() ![]() |
||
C. ![]() ![]() |
||
D. ![]() ![]() |
||
E. ![]() ![]() |
A. SI > CI ![]() |
||
B. SI = CI ![]() |
||
C. SI >> CI ![]() |
||
D. CI >> SI ![]() |
||
E. CI > SI ![]() |
State |
T(C) |
P (kPa) |
H(kJ/kg) |
S (kJ/kg K) |
1 |
300 |
1000 |
750 |
10 |
2 |
50 |
10 |
512 |
10 |
3 |
50 |
10 |
75 |
2 |
4 |
50 |
1000 |
75 |
2 |
A. 2.4 MW ![]() |
||
B. 2.4 kW ![]() |
||
C. 24MW ![]() |
||
D. 24 kW ![]() |
||
E. 240 MW ![]() |
State |
T(C) |
P (kPa) |
H(kJ/kg) |
S (kJ/kg K) |
1 |
300 |
1000 |
750 |
10 |
2 |
50 |
10 |
512 |
10 |
3 |
50 |
10 |
75 |
2 |
4 |
50 |
1000 |
75 |
2 |
A. 1 ![]() |
||
B. 2 ![]() |
||
C. 3 ![]() |
||
D. 4 ![]() |
||
E. None of the above ![]() |
A. 571° K ![]() |
||
B. 7879 °K ![]() |
||
C. 57,360°K ![]() |
||
D. 5000°K ![]() |
||
E. 7143° K ![]() |
A. 267 atm ![]() |
||
B. 25 atm ![]() |
||
C. 7.7 atm ![]() |
||
D. 136 atm ![]() |
||
E. 5000 atm ![]() |
A. 82% ![]() |
||
B. 77% ![]() |
||
C. 66% ![]() |
||
D. 44% ![]() |
||
E. 60% ![]() |
A. 1100 kJ/kg ![]() |
||
B. 3000 kJ/kg ![]() |
||
C. 1991 kJ/kg ![]() |
||
D. 912 kJ/kg ![]() |
||
E. 500 kJ/kg ![]() |