|
A. Steady state |
||
|
B. Constant density |
||
|
C. Constant temperature |
||
|
D. Constant velocity |
||
|
E. Constant pressure |
|
A. 10 |
||
|
B. 100 |
||
|
C. 1000 |
||
|
D. 10,000 |
||
|
E. 100,000 |
|
A. Re |
||
|
B. Pr |
||
|
C. Gr |
||
|
D. St |
||
|
E. Nu |
|
A. Re |
||
|
B. St |
||
|
C. Gr |
||
|
D. Pr |
||
|
E. Sc |
|
A. Pr |
||
|
B. St |
||
|
C. Re |
||
|
D. Nu |
||
|
E. Gr |
|
A. Isentropic |
||
|
B. Isenthalpic |
||
|
C. Compressible |
||
|
D. Isobaric |
||
|
E. Isochoric |
|
A. Classical Thermodynamics |
||
|
B. Statistical Mechanics |
||
|
C. Kinetic Theory |
||
|
D. Continuum Mechanics |
||
|
E. Both A and D |
|
A. Brayton cycle |
||
|
B. Diesel cycle |
||
|
C. Rankine cycle |
||
|
D. Carnot cycle |
||
|
E. Otto cycle |
|
A. Pressure |
||
|
B. Temperature |
||
|
C. Specific volume |
||
|
D. Internal energy |
||
|
E. Flow rate |
|
A. Flow rate |
||
|
B. Diffusivity |
||
|
C. Reynolds number |
||
|
D. Gibbs free energy |
||
|
E. Location |
|
A. A thermodynamic cycle describes a process in which exhange of mass is used to perform work. |
||
|
B. A thermodynamic cycle describes a process in which pressure remains constant. |
||
|
C. A thermodynamic cycle describes a process in which pressure and temperature do not return to their initial values. |
||
|
D. A thermodynamic cycle describes a process in which net variation in state properties is non-zero. |
||
|
E. A thermodynamic cycle describes a process in which heat and/or work are exchanged with no net change in state variables. |
|
A. Net heat exchange is zero. |
||
|
B. Net heat input equals net work output. |
||
|
C. Net work input equals net heat output. |
||
|
D. Net work input equals net heat input. |
||
|
E. Both B and C |
|
A. Diesel cycle |
||
|
B. Carnot cycle |
||
|
C. Rankine cycle |
||
|
D. Reversible cycle |
||
|
E. Heat engine cycle |
|
A. Wind sock observations |
||
|
B. Laser doppler |
||
|
C. Particle imaging velocimetry |
||
|
D. Hot wire |
||
|
E. All of the above |
|
A. 11 mm Hg |
||
|
B. 55 mm Hg |
||
|
C. 1120 mm Hg |
||
|
D. -1120 mm Hg |
||
|
E. -112 mm Hg |
|
A. 87 mm Hg |
||
|
B. 17.5 mm Hg |
||
|
C. 1750 mm Hg |
||
|
D. -17.5 mm Hg |
||
|
E. -175 mm Hg |
|
A. 110 mm Hg |
||
|
B. -56 mm Hg |
||
|
C. -1110 mm Hg |
||
|
D. 1110 mm Hg |
||
|
E. None of the above |
|
A. Q is proportional to pressure drop. |
||
|
B. Q is inversely proportional to pressure drop. |
||
|
C. Q is inversely proportional to the square root of pressure drop. |
||
|
D. Q is proportional to the square root of pressure drop. |
||
|
E. None of the above |
|
A. 14.7 psi |
||
|
B. -14.7 psi |
||
|
C. -29.4 psi |
||
|
D. 0 psi |
||
|
E. -1 atm |
|
A. 0.506 kg/s |
||
|
B. 0.503 kg/s |
||
|
C. 6.5 kg/s |
||
|
D. 0.05 kg/s |
||
|
E. 0.65 kg/s |
|
A. 2 kg/s |
||
|
B. 8.1 kg/s |
||
|
C. 18 kg/s |
||
|
D. 180 kg/s |
||
|
E. 81 kg/s |
|
A. 53 |
||
|
B. 530 |
||
|
C. 5.3 |
||
|
D. 5300 |
||
|
E. 22 |
|
A. 32 |
||
|
B. 3200 |
||
|
C. 320 |
||
|
D. -32 |
||
|
E. 3.2 |
|
A. It is typically close to perfectly cylindrical. |
||
|
B. It is typically tapered from top to bottom. |
||
|
C. It is typically roughened to promote turbulence. |
||
|
D. It is typically notched for each flow rate increment. |
||
|
E. None of the above |
|
A. 0.2 ft3/s |
||
|
B. 0.4 ft3/s |
||
|
C. 20 ft3/s |
||
|
D. 2.6 ft3/s |
||
|
E. 1 ft3/s |
|
A. Pump affinity laws describe similarity to other pumps. |
||
|
B. Pump affinity laws describe cost versus performance. |
||
|
C. Pump affinity laws describe relationship of geometric variables and dynamic performance. |
||
|
D. Pump affinity laws describe dynamic head versus fluid viscosity. |
||
|
E. None of the above |
|
A. When vapor appears in the suction line |
||
|
B. When the net postive suction head at the pump input is less than the vapor pressure of the liquid |
||
|
C. When the liquid to be pumped begins to boil in the suction line |
||
|
D. All of the above |
||
|
E. None of the above |
|
A. The flow rates from the two pieces of equipment are equal. |
||
|
B. The total mass flow rate is the sum of the mass flow rates from each piece of equipment. |
||
|
C. The temperatures of the streams from each piece of equipment are equal. |
||
|
D. The pressures in the output streams from each piece of equipment are nearly equal. |
||
|
E. Both A and C |
||
|
F. Both B and D |
|
A. The flow rates are the same in 1 and 2. |
||
|
B. The inlet pressures are the same for 1 and 2. |
||
|
C. The outlet pressures are the same for 1 and 2. |
||
|
D. The inlet pressure of one of the pumps is equivalent to the outlet pressure of the other pump. |
||
|
E. Both A and D |
|
A. Square root of flow rate |
||
|
B. Cube root of flow rate |
||
|
C. Flow rate |
||
|
D. Flow rate squared |
||
|
E. Cube of flow rate |
|
A. 2.4 lb/min |
||
|
B. 2.4 g/s |
||
|
C. 2.4 kg/min |
||
|
D. 2.4 kg/s |
||
|
E. 2.4 kg/hr |
|
A. Produce a flow rate independent of operating speed |
||
|
B. Produce a flow rate independent of discharge pressure |
||
|
C. Produce a flow rate independent of suction head |
||
|
D. Usually require a relief or safety valve |
||
|
E. Both B and D |
|
A. 0.7 kW |
||
|
B. 0.07 kW |
||
|
C. 7 kW |
||
|
D. 70 kW |
||
|
E. 750 kW |
|
A. 0.1 kW |
||
|
B. 0.01 kW |
||
|
C. 1 kW |
||
|
D. 10 kW |
||
|
E. 100 kW |
|
A. 0.33 kW |
||
|
B. 3.3 W |
||
|
C. 3.3 hp |
||
|
D. 3.3 tons |
||
|
E. 3.3 kw |
|
A. 93% |
||
|
B. 85% |
||
|
C. 79% |
||
|
D. 74% |
||
|
E. 65% |
|
A. Blowers have an unconstrained exit stream, and pumps do not. |
||
|
B. Blowers move gases, and pumps move liquids and gases. |
||
|
C. Pumps pressurize liquids, and blowers move gases. |
||
|
D. Pumps operate at lower pressures than blowers. |
||
|
E. Pumps operate on incompressible fluids, and blowers operate on compressible fluids. |
|
A. 33.9 ft |
||
|
B. 3.39 ft |
||
|
C. 340 ft |
||
|
D. 3340 ft |
||
|
E. None of the above |
|
A. 3.3 Pa |
||
|
B. 2.2 Pa |
||
|
C. 2.2 kPa |
||
|
D. 3.7 kPa |
||
|
E. 440 kPa |
|
A. 1 psi |
||
|
B. 2.5 psi |
||
|
C. 0.25 psi |
||
|
D. 43 psi |
||
|
E. 10 psi |
|
A. Turbulent |
||
|
B. Laminar |
||
|
C. Transitional |
||
|
D. None of the above |
||
|
E. All of the above |
|
A. Remains constant |
||
|
B. Decreases |
||
|
C. Increases |
||
|
D. Doubles |
||
|
E. None of the above |
|
A. 5 cm |
||
|
B. 0.6 cm |
||
|
C. 2.0 cm |
||
|
D. 15 cm |
||
|
E. 7 cm |
|
A. 1.4 cm |
||
|
B. 2.5 cm |
||
|
C. 3.9 cm |
||
|
D. 5.0 cm |
||
|
E. 1.1 cm |
|
A. Presence/absence of organic chemicals in the pipe environment |
||
|
B. Installation cost and lifetime |
||
|
C. Brittleness |
||
|
D. Ease of corrosion |
||
|
E. All of the above |
|
A. Internal diameter |
||
|
B. Internal and external diameter |
||
|
C. External diameter (OD) and wall thickness |
||
|
D. External Diameter |
||
|
E. None of the above |
|
A. 0.5 atm |
||
|
B. 1 atm |
||
|
C. 0.2 atm |
||
|
D. 0.02 |
||
|
E. 5 atm |
|
A. 1.8 kPa |
||
|
B. 1800 Pa |
||
|
C. 17.6 Pa |
||
|
D. 1.16 Pa |
||
|
E. 0.18 Pa |
|
A. 24 kPa |
||
|
B. 90 Pa |
||
|
C. 900 Pa |
||
|
D. 9 kPa |
||
|
E. 45 kPa |
|
A. 112 kPa |
||
|
B. 269 Pa |
||
|
C. 2.69 Pa |
||
|
D. 524 kPa |
||
|
E. 262 kPa |
|
a. Additive |
||
|
b. Multiplicative |
||
|
c. Equal |
||
|
d. Related reciprocally |
|
A. 0.96 m2 |
||
|
B. 11.9 m2 |
||
|
C. 0.85 m2 |
||
|
D. 1.4 m2 |
||
|
E. 0.75 m2 |
|
A. 35°C |
||
|
B. 31°C |
||
|
C. 38°C |
||
|
D. 45°C |
||
|
E. 50°C |
|
A. 40°C |
||
|
B. 45°C |
||
|
C. 50°C |
||
|
D. 35°C |
||
|
E. 55°C |

|
A. 0.5 kg/s |
||
|
B. 2 kg/s |
||
|
C. 5 kg/s |
||
|
D. 1 kg/s |
||
|
E. 50 kg/s |
|
A. 715 W/m2K |
||
|
B. 800 W/m2K |
||
|
C. 615 W/m2K |
||
|
D. 0.715 W/m2K |
||
|
E. 1.43 W/m2K |
|
A. 60 kW |
||
|
B. 60 kJ/s |
||
|
C. 6 kW |
||
|
D. 6000 W |
||
|
E. Both A and B |

|
A. Parallel |
||
|
B. Cocurrent |
||
|
C. Countercurrent |
||
|
D. Cross flow |
||
|
E. Both A and B |
|
A. 47.5°C |
||
|
B. 41.6°C |
||
|
C. 45.3°C |
||
|
D. 27.5°C |
||
|
E. 17.5°C |
|
A. 6.5 |
||
|
B. 0.15 |
||
|
C. 6.0 |
||
|
D. 0.2 |
||
|
E. 10 |
|
A. 0.1 |
||
|
B. 0.027 |
||
|
C. 7.7 |
||
|
D. 7.3 |
||
|
E. 0.03 |
|
A. 60 W |
||
|
B. 6 W |
||
|
C. 600 W |
||
|
D. 6000 W |
||
|
E. 600 kW |
|
A. Ammonia-water. |
||
|
B. Lithium bromide-water. |
||
|
C. Lithium chloride-water. |
||
|
D. Water-sulfuric acid. |
||
|
E. Water-octane. |
|
A. Electricity |
||
|
B. Motion |
||
|
C. Kinetic Energy |
||
|
D. Heat |
||
|
E. Fuel oil |
|
A. Rankine cycle |
||
|
B. Diesel cycle |
||
|
C. Carnot cycle |
||
|
D. Reverse Rankine cycle |
||
|
E. All of the above |
|
A. 2.04 |
||
|
B. 0.49 |
||
|
C. 2.49 |
||
|
D. 0.51 |
||
|
E. -1.1 |
|
A. 54 kJ/kg |
||
|
B. 108 kJ/kg |
||
|
C. 110 kJ/kg |
||
|
D. 164 kJ/kg |
||
|
E. 208 kJ/kg |
|
A. 110 kJ/kg |
||
|
B. 54 kJ/kg |
||
|
C. 108 kJ/kg |
||
|
D. 220 kJ/kg |
||
|
E. 400 kJ/kg |
|
A. 0.54 |
||
|
B. 2.0 |
||
|
C. 1.8 |
||
|
D. 0.6 |
||
|
E. 0.25 |
|
A. Only for providing cooling for temperatures above 0°C |
||
|
B. Only for providing cooling for temperatures above 200°K |
||
|
C. Only for very small-scale operations |
||
|
D. Only for very large-scale operations |
||
|
E. All of the above |
|
A. 200% |
||
|
B. 100% |
||
|
C. 50% |
||
|
D. 5% |
||
|
E. None of the above |
|
A. 38% |
||
|
B. 58% |
||
|
C. 25% |
||
|
D. 50% |
||
|
E. 100% |
|
A. 100 years ago |
||
|
B. 300 years ago |
||
|
C. 700 years ago |
||
|
D. 900 years ago |
||
|
E. 1200 years ago |
|
A. |
||
|
B. |
||
|
C. |
||
|
D. |
||
|
E. |
|
A. SI > CI |
||
|
B. SI = CI |
||
|
C. SI >> CI |
||
|
D. CI >> SI |
||
|
E. CI > SI |
| State |
T(C) |
P (kPa) |
H(kJ/kg) |
S (kJ/kg K) |
| 1 |
300 |
1000 |
750 |
10 |
| 2 |
50 |
10 |
512 |
10 |
| 3 |
50 |
10 |
75 |
2 |
| 4 |
50 |
1000 |
75 |
2 |
|
A. 2.4 MW |
||
|
B. 2.4 kW |
||
|
C. 24MW |
||
|
D. 24 kW |
||
|
E. 240 MW |
| State |
T(C) |
P (kPa) |
H(kJ/kg) |
S (kJ/kg K) |
| 1 |
300 |
1000 |
750 |
10 |
| 2 |
50 |
10 |
512 |
10 |
| 3 |
50 |
10 |
75 |
2 |
| 4 |
50 |
1000 |
75 |
2 |
|
A. 1 |
||
|
B. 2 |
||
|
C. 3 |
||
|
D. 4 |
||
|
E. None of the above |
|
A. 571° K |
||
|
B. 7879 °K |
||
|
C. 57,360°K |
||
|
D. 5000°K |
||
|
E. 7143° K |
|
A. 267 atm |
||
|
B. 25 atm |
||
|
C. 7.7 atm |
||
|
D. 136 atm |
||
|
E. 5000 atm |
|
A. 82% |
||
|
B. 77% |
||
|
C. 66% |
||
|
D. 44% |
||
|
E. 60% |
|
A. 1100 kJ/kg |
||
|
B. 3000 kJ/kg |
||
|
C. 1991 kJ/kg |
||
|
D. 912 kJ/kg |
||
|
E. 500 kJ/kg |