A. Steady state | ||
B. Constant density | ||
C. Constant temperature | ||
D. Constant velocity | ||
E. Constant pressure |
A. 10 | ||
B. 100 | ||
C. 1000 | ||
D. 10,000 | ||
E. 100,000 |
A. Re | ||
B. Pr | ||
C. Gr | ||
D. St | ||
E. Nu |
A. Re | ||
B. St | ||
C. Gr | ||
D. Pr | ||
E. Sc |
A. Pr | ||
B. St | ||
C. Re | ||
D. Nu | ||
E. Gr |
A. Isentropic | ||
B. Isenthalpic | ||
C. Compressible | ||
D. Isobaric | ||
E. Isochoric |
A. Classical Thermodynamics | ||
B. Statistical Mechanics | ||
C. Kinetic Theory | ||
D. Continuum Mechanics | ||
E. Both A and D |
A. Brayton cycle | ||
B. Diesel cycle | ||
C. Rankine cycle | ||
D. Carnot cycle | ||
E. Otto cycle |
A. Pressure | ||
B. Temperature | ||
C. Specific volume | ||
D. Internal energy | ||
E. Flow rate |
A. Flow rate | ||
B. Diffusivity | ||
C. Reynolds number | ||
D. Gibbs free energy | ||
E. Location |
A. A thermodynamic cycle describes a process in which exhange of mass is used to perform work. | ||
B. A thermodynamic cycle describes a process in which pressure remains constant. | ||
C. A thermodynamic cycle describes a process in which pressure and temperature do not return to their initial values. | ||
D. A thermodynamic cycle describes a process in which net variation in state properties is non-zero. | ||
E. A thermodynamic cycle describes a process in which heat and/or work are exchanged with no net change in state variables. |
A. Net heat exchange is zero. | ||
B. Net heat input equals net work output. | ||
C. Net work input equals net heat output. | ||
D. Net work input equals net heat input. | ||
E. Both B and C |
A. Diesel cycle | ||
B. Carnot cycle | ||
C. Rankine cycle | ||
D. Reversible cycle | ||
E. Heat engine cycle |
A. Wind sock observations | ||
B. Laser doppler | ||
C. Particle imaging velocimetry | ||
D. Hot wire | ||
E. All of the above |
A. 11 mm Hg | ||
B. 55 mm Hg | ||
C. 1120 mm Hg | ||
D. -1120 mm Hg | ||
E. -112 mm Hg |
A. 87 mm Hg | ||
B. 17.5 mm Hg | ||
C. 1750 mm Hg | ||
D. -17.5 mm Hg | ||
E. -175 mm Hg |
A. 110 mm Hg | ||
B. -56 mm Hg | ||
C. -1110 mm Hg | ||
D. 1110 mm Hg | ||
E. None of the above |
A. Q is proportional to pressure drop. | ||
B. Q is inversely proportional to pressure drop. | ||
C. Q is inversely proportional to the square root of pressure drop. | ||
D. Q is proportional to the square root of pressure drop. | ||
E. None of the above |
A. 14.7 psi | ||
B. -14.7 psi | ||
C. -29.4 psi | ||
D. 0 psi | ||
E. -1 atm |
A. 0.506 kg/s | ||
B. 0.503 kg/s | ||
C. 6.5 kg/s | ||
D. 0.05 kg/s | ||
E. 0.65 kg/s |
A. 2 kg/s | ||
B. 8.1 kg/s | ||
C. 18 kg/s | ||
D. 180 kg/s | ||
E. 81 kg/s |
A. 53 | ||
B. 530 | ||
C. 5.3 | ||
D. 5300 | ||
E. 22 |
A. 32 | ||
B. 3200 | ||
C. 320 | ||
D. -32 | ||
E. 3.2 |
A. It is typically close to perfectly cylindrical. | ||
B. It is typically tapered from top to bottom. | ||
C. It is typically roughened to promote turbulence. | ||
D. It is typically notched for each flow rate increment. | ||
E. None of the above |
A. 0.2 ft3/s | ||
B. 0.4 ft3/s | ||
C. 20 ft3/s | ||
D. 2.6 ft3/s | ||
E. 1 ft3/s |
A. Pump affinity laws describe similarity to other pumps. | ||
B. Pump affinity laws describe cost versus performance. | ||
C. Pump affinity laws describe relationship of geometric variables and dynamic performance. | ||
D. Pump affinity laws describe dynamic head versus fluid viscosity. | ||
E. None of the above |
A. When vapor appears in the suction line | ||
B. When the net postive suction head at the pump input is less than the vapor pressure of the liquid | ||
C. When the liquid to be pumped begins to boil in the suction line | ||
D. All of the above | ||
E. None of the above |
A. The flow rates from the two pieces of equipment are equal. | ||
B. The total mass flow rate is the sum of the mass flow rates from each piece of equipment. | ||
C. The temperatures of the streams from each piece of equipment are equal. | ||
D. The pressures in the output streams from each piece of equipment are nearly equal. | ||
E. Both A and C | ||
F. Both B and D |
A. The flow rates are the same in 1 and 2. | ||
B. The inlet pressures are the same for 1 and 2. | ||
C. The outlet pressures are the same for 1 and 2. | ||
D. The inlet pressure of one of the pumps is equivalent to the outlet pressure of the other pump. | ||
E. Both A and D |
A. Square root of flow rate | ||
B. Cube root of flow rate | ||
C. Flow rate | ||
D. Flow rate squared | ||
E. Cube of flow rate |
A. 2.4 lb/min | ||
B. 2.4 g/s | ||
C. 2.4 kg/min | ||
D. 2.4 kg/s | ||
E. 2.4 kg/hr |
A. Produce a flow rate independent of operating speed | ||
B. Produce a flow rate independent of discharge pressure | ||
C. Produce a flow rate independent of suction head | ||
D. Usually require a relief or safety valve | ||
E. Both B and D |
A. 0.7 kW | ||
B. 0.07 kW | ||
C. 7 kW | ||
D. 70 kW | ||
E. 750 kW |
A. 0.1 kW | ||
B. 0.01 kW | ||
C. 1 kW | ||
D. 10 kW | ||
E. 100 kW |
A. 0.33 kW | ||
B. 3.3 W | ||
C. 3.3 hp | ||
D. 3.3 tons | ||
E. 3.3 kw |
A. 93% | ||
B. 85% | ||
C. 79% | ||
D. 74% | ||
E. 65% |
A. Blowers have an unconstrained exit stream, and pumps do not. | ||
B. Blowers move gases, and pumps move liquids and gases. | ||
C. Pumps pressurize liquids, and blowers move gases. | ||
D. Pumps operate at lower pressures than blowers. | ||
E. Pumps operate on incompressible fluids, and blowers operate on compressible fluids. |
A. 33.9 ft | ||
B. 3.39 ft | ||
C. 340 ft | ||
D. 3340 ft | ||
E. None of the above |
A. 3.3 Pa | ||
B. 2.2 Pa | ||
C. 2.2 kPa | ||
D. 3.7 kPa | ||
E. 440 kPa |
A. 1 psi | ||
B. 2.5 psi | ||
C. 0.25 psi | ||
D. 43 psi | ||
E. 10 psi |
A. Turbulent | ||
B. Laminar | ||
C. Transitional | ||
D. None of the above | ||
E. All of the above |
A. Remains constant | ||
B. Decreases | ||
C. Increases | ||
D. Doubles | ||
E. None of the above |
A. 5 cm | ||
B. 0.6 cm | ||
C. 2.0 cm | ||
D. 15 cm | ||
E. 7 cm |
A. 1.4 cm | ||
B. 2.5 cm | ||
C. 3.9 cm | ||
D. 5.0 cm | ||
E. 1.1 cm |
A. Presence/absence of organic chemicals in the pipe environment | ||
B. Installation cost and lifetime | ||
C. Brittleness | ||
D. Ease of corrosion | ||
E. All of the above |
A. Internal diameter | ||
B. Internal and external diameter | ||
C. External diameter (OD) and wall thickness | ||
D. External Diameter | ||
E. None of the above |
A. 0.5 atm | ||
B. 1 atm | ||
C. 0.2 atm | ||
D. 0.02 | ||
E. 5 atm |
A. 1.8 kPa | ||
B. 1800 Pa | ||
C. 17.6 Pa | ||
D. 1.16 Pa | ||
E. 0.18 Pa |
A. 24 kPa | ||
B. 90 Pa | ||
C. 900 Pa | ||
D. 9 kPa | ||
E. 45 kPa |
A. 112 kPa | ||
B. 269 Pa | ||
C. 2.69 Pa | ||
D. 524 kPa | ||
E. 262 kPa |
a. Additive | ||
b. Multiplicative | ||
c. Equal | ||
d. Related reciprocally |
A. 0.96 m2 | ||
B. 11.9 m2 | ||
C. 0.85 m2 | ||
D. 1.4 m2 | ||
E. 0.75 m2 |
A. 35°C | ||
B. 31°C | ||
C. 38°C | ||
D. 45°C | ||
E. 50°C |
A. 40°C | ||
B. 45°C | ||
C. 50°C | ||
D. 35°C | ||
E. 55°C |
A. 0.5 kg/s | ||
B. 2 kg/s | ||
C. 5 kg/s | ||
D. 1 kg/s | ||
E. 50 kg/s |
A. 715 W/m2K | ||
B. 800 W/m2K | ||
C. 615 W/m2K | ||
D. 0.715 W/m2K | ||
E. 1.43 W/m2K |
A. 60 kW | ||
B. 60 kJ/s | ||
C. 6 kW | ||
D. 6000 W | ||
E. Both A and B |
A. Parallel | ||
B. Cocurrent | ||
C. Countercurrent | ||
D. Cross flow | ||
E. Both A and B |
A. 47.5°C | ||
B. 41.6°C | ||
C. 45.3°C | ||
D. 27.5°C | ||
E. 17.5°C |
A. 6.5 | ||
B. 0.15 | ||
C. 6.0 | ||
D. 0.2 | ||
E. 10 |
A. 0.1 | ||
B. 0.027 | ||
C. 7.7 | ||
D. 7.3 | ||
E. 0.03 |
A. 60 W | ||
B. 6 W | ||
C. 600 W | ||
D. 6000 W | ||
E. 600 kW |
A. Ammonia-water. | ||
B. Lithium bromide-water. | ||
C. Lithium chloride-water. | ||
D. Water-sulfuric acid. | ||
E. Water-octane. |
A. Electricity | ||
B. Motion | ||
C. Kinetic Energy | ||
D. Heat | ||
E. Fuel oil |
A. Rankine cycle | ||
B. Diesel cycle | ||
C. Carnot cycle | ||
D. Reverse Rankine cycle | ||
E. All of the above |
A. 2.04 | ||
B. 0.49 | ||
C. 2.49 | ||
D. 0.51 | ||
E. -1.1 |
A. 54 kJ/kg | ||
B. 108 kJ/kg | ||
C. 110 kJ/kg | ||
D. 164 kJ/kg | ||
E. 208 kJ/kg |
A. 110 kJ/kg | ||
B. 54 kJ/kg | ||
C. 108 kJ/kg | ||
D. 220 kJ/kg | ||
E. 400 kJ/kg |
A. 0.54 | ||
B. 2.0 | ||
C. 1.8 | ||
D. 0.6 | ||
E. 0.25 |
A. Only for providing cooling for temperatures above 0°C | ||
B. Only for providing cooling for temperatures above 200°K | ||
C. Only for very small-scale operations | ||
D. Only for very large-scale operations | ||
E. All of the above |
A. 200% | ||
B. 100% | ||
C. 50% | ||
D. 5% | ||
E. None of the above |
A. 38% | ||
B. 58% | ||
C. 25% | ||
D. 50% | ||
E. 100% |
A. 100 years ago | ||
B. 300 years ago | ||
C. 700 years ago | ||
D. 900 years ago | ||
E. 1200 years ago |
A. | ||
B. | ||
C. | ||
D. | ||
E. |
A. SI > CI | ||
B. SI = CI | ||
C. SI >> CI | ||
D. CI >> SI | ||
E. CI > SI |
State |
T(C) |
P (kPa) |
H(kJ/kg) |
S (kJ/kg K) |
1 |
300 |
1000 |
750 |
10 |
2 |
50 |
10 |
512 |
10 |
3 |
50 |
10 |
75 |
2 |
4 |
50 |
1000 |
75 |
2 |
A. 2.4 MW | ||
B. 2.4 kW | ||
C. 24MW | ||
D. 24 kW | ||
E. 240 MW |
State |
T(C) |
P (kPa) |
H(kJ/kg) |
S (kJ/kg K) |
1 |
300 |
1000 |
750 |
10 |
2 |
50 |
10 |
512 |
10 |
3 |
50 |
10 |
75 |
2 |
4 |
50 |
1000 |
75 |
2 |
A. 1 | ||
B. 2 | ||
C. 3 | ||
D. 4 | ||
E. None of the above |
A. 571° K | ||
B. 7879 °K | ||
C. 57,360°K | ||
D. 5000°K | ||
E. 7143° K |
A. 267 atm | ||
B. 25 atm | ||
C. 7.7 atm | ||
D. 136 atm | ||
E. 5000 atm |
A. 82% | ||
B. 77% | ||
C. 66% | ||
D. 44% | ||
E. 60% |
A. 1100 kJ/kg | ||
B. 3000 kJ/kg | ||
C. 1991 kJ/kg | ||
D. 912 kJ/kg | ||
E. 500 kJ/kg |