|
a. Linear systems do not satisfy superposition. |
||
|
b. Linear systems do not satisfy homogeneity. |
||
|
c. Linear systems have one equilibrium point at origin. |
||
|
d. Linear systems have many equilibrium points at origin. |
|
a. Increases, decreases |
||
|
b. Increases, increases |
||
|
c. Increases, remains unchanged |
||
|
d. reRmains unchanged, increases |
|
a. “t” |
||
|
b. “s” |
||
|
c. “d” |
||
|
d. “g” |
|
a. 0 to 5 |
||
|
b. 0 to 1 |
||
|
c. 1 to 10 |
||
|
d. 0 to 0.1 |
|
a. Numerator |
||
|
b. Denominator |
||
|
c. Natural frequency |
||
|
d. Gain |
|
a. Flow |
||
|
b. Pressure |
||
|
c. Current |
||
|
d. Torque |
|
a. How much the system oscillates |
||
|
b. How fast the system oscillates |
||
|
c. Size of steady state response |
||
|
d. None of the above |
|
a. One |
||
|
b. Two |
||
|
c. Three |
||
|
d. Four |
|
a. Two |
||
|
b. Three |
||
|
c. Four |
||
|
d. Five |
|
a. How much the system oscillates |
||
|
b. How fast the system oscillates |
||
|
c. Size of steady state response |
||
|
d. None of the above |
|
a. Natural frequency |
||
|
b. Overshoot |
||
|
c. Gain |
||
|
d. All of the above |
|
a. Natural frequency |
||
|
b. Damping ratio |
||
|
c. Gain |
||
|
d. None of the above |
|
a. How much the system oscillates |
||
|
b. How fast the system oscillates |
||
|
c. Size of steady state response |
||
|
d. None of the above |
|
a. A transfer function is ratio of transform of input to transform of output. |
||
|
b. A transfer function is ratio of transform of output to transform of input. |
||
|
c. Both A and B |
||
|
d. None of the above |
|
a. Impulse |
||
|
b. Step |
||
|
c. Both A and B |
||
|
d. None of the above |
|
a. Capacitor |
||
|
b. Inductor |
||
|
c. Resistor |
||
|
d. All of the above |
|
a. Overdamped |
||
|
b. Underdamped |
||
|
c. Undamped |
||
|
d. All of the above |
|
a. Oscillations |
||
|
b. Overshoot |
||
|
c. Both A and B |
||
|
d. None of the above |
|
a. Ramp input |
||
|
b. Step input |
||
|
c. Constant input |
||
|
d. None of the above |
|
a. Gear train |
||
|
b. Four-bar linkage |
||
|
c. Transformer |
||
|
d. All of the above |
|
a. Transfer function applies to nonlinear system. |
||
|
b. Transfer function applies to stationary systems. |
||
|
c. During transfer function, computation all initial conditions are assumed as zero. |
||
|
d. Transfer function describes input-output dynamics. |
|
a. Loop method |
||
|
b. Node method |
||
|
c. Complex impedances |
||
|
d. Perimeter method |
|
a. Linear systems satisfy superposition. |
||
|
b. Linear systems satisfy homogeneity. |
||
|
c. Linear systems have two equilibrium points at origin. |
||
|
d. Linear systems have one equilibrium point at origin. |
|
a. Input variables originate outside the system. |
||
|
b. Input variables originate inside the system. |
||
|
c. Input variables are not affected by what happens in a system. |
||
|
d. All of the above |
|
a. Output variables are not influenced by input variables. |
||
|
b. Output variables do not regulate the system. |
||
|
c. Output variables do not monitor the system. |
||
|
d. Output variables are influenced by input variables. |
|
a. Two |
||
|
b. Three |
||
|
c. Four |
||
|
d. Five |
|
a. Time |
||
|
b. Frequency |
||
|
c. Both A and B |
||
|
d. None of the above |
|
a. Power gain |
||
|
b. Phase |
||
|
c. Margin |
||
|
d. Percentage overshoot |
|
a. 0 |
||
|
b. 1 |
||
|
c. -1 |
||
|
d. 2 |
|
a. 2 |
||
|
b. 4 |
||
|
c. 8 |
||
|
d. 10 |
|
a. 2 |
||
|
b. 4 |
||
|
c. 8 |
||
|
d. 10 |
|
a. 0 |
||
|
b. 180 |
||
|
c. 360 |
||
|
d. -180 |
|
a. Decibels |
||
|
b. Logarithmic scale |
||
|
c. Degrees |
||
|
d. Percentage overshoot |
|
a. Decibels |
||
|
b. Logarithmic scale |
||
|
c. Degrees |
||
|
d. Percentage overshoot |
|
a. Decibels |
||
|
b. Logarithmic scale |
||
|
c. Degrees |
||
|
d. Percentage overshoot |
|
a. More |
||
|
b. Less |
||
|
c. The same |
||
|
d. Zero |
|
a. Increases, decreases |
||
|
b. Increases, increases |
||
|
c. Increases, remains unchanged |
||
|
d. Remains unchanged, increases |
|
a. First |
||
|
b. Second |
||
|
c. Third |
||
|
d. Fourth |
|
a. 6 percent |
||
|
b. 8 percent |
||
|
c. 10 percent |
||
|
d. 12 percent |
|
a. 1 percent |
||
|
b. 0.05 percent |
||
|
c. 10 percent |
||
|
d. 0 percent |
|
a. 0 |
||
|
b. 1 |
||
|
c. 2 |
||
|
d. 3 |
|
a. 0 |
||
|
b. 1 |
||
|
c. 2 |
||
|
d. 3 |
|
a. Frequency of oscillations |
||
|
b. Reciprocal of time constant |
||
|
c. Undamped natural frequency |
||
|
d. None of the above |
|
a. Frequency of oscillations |
||
|
b. Reciprocal of time constant |
||
|
c. Undamped natural frequency |
||
|
d. None of the above |
|
a. Frequency of oscillations |
||
|
b. Reciprocal of time constant |
||
|
c. Undamped natural frequency |
||
|
d. None of the above |
|
a. Impulse |
||
|
b. Step |
||
|
c. Ramp |
||
|
d. Random |
|
a. At open loop zeros |
||
|
b. At closed loop zeros |
||
|
c. At open loop poles |
||
|
d. At closed loop poles |
|
a. At open loop zeros |
||
|
b. At closed loop zeros |
||
|
c. At open loop poles |
||
|
d. At closed loop poles |
|
a. A Nyquist plot uses the same plot to display amplitude and phase. |
||
|
b. A Nyquist plot cannot depict if a system is stable or unstable. |
||
|
c. Both A and B |
||
|
d. None of the above |
|
a. Phase margin |
||
|
b. Gain margin |
||
|
c. Both A and B |
||
|
d. None of the above |
|
a. Difference between input and measured varying output |
||
|
b. Difference between input and measured constant output |
||
|
c. Difference between measured constant input and measured varying output |
||
|
d. None of the above |
|
a. 0.2 |
||
|
b. 0.4 |
||
|
c. 0.6 |
||
|
d. 0.8 |
|
a. Phase lead |
||
|
b. Phase lag |
||
|
c. Integration |
||
|
d. All of the above |
|
a. Phase lead |
||
|
b. Phase lag |
||
|
c. Integration |
||
|
d. All of the above |
|
a. Open-loop time response |
||
|
b. Closed-loop time response |
||
|
c. Open-loop frequency response |
||
|
d. Closed-loop frequency response |
|
a. 0.1 |
||
|
b. 1 |
||
|
c. 2 |
||
|
d. 0 |
|
a. Added to |
||
|
b. Subtracted from |
||
|
c. Multiplied with |
||
|
d. Divided by |
|
a. 1 |
||
|
b. 0.1 |
||
|
c. 2 |
||
|
d. 0.01 |
|
a. P |
||
|
b. D |
||
|
c. PD |
||
|
d. PID |
|
a. Zero |
||
|
b. One |
||
|
c. Infinity |
||
|
d. Ten |
|
a. Zero |
||
|
b. One |
||
|
c. Infinity |
||
|
d. Ten |
|
a. AC |
||
|
b. DC |
||
|
c. On-Off |
||
|
d. Integral |
|
a. Phase margin |
||
|
b. Gain margin |
||
|
c. Natural frequency |
||
|
d. Overshoot |
|
a. 0.1 |
||
|
b. 0.01 |
||
|
c. 0 |
||
|
d. 1 |
|
a. Sensor |
||
|
b. Input |
||
|
c. Plant |
||
|
d. None of the above |
|
a. Sensor |
||
|
b. Input |
||
|
c. Plant |
||
|
d. None of the above |
|
a. Input |
||
|
b. Output |
||
|
c. Control effort |
||
|
d. Response |
|
a. Input |
||
|
b. Measured input |
||
|
c. Output |
||
|
d. Error |
|
a. Proportional control |
||
|
b. Integral control |
||
|
c. On-Off control |
||
|
d. Derivative control |
|
a. Zeros |
||
|
b. Poles |
||
|
c. Gain |
||
|
d. Phase |
|
a. Steady state error |
||
|
b. Phase margin |
||
|
c. Open loop gain |
||
|
d. Closed loop gain |
|
a. Proportional |
||
|
b. Integral |
||
|
c. On-Off |
||
|
d. Derivative |
|
a. Overshoot is within plus and minus 1 percent. |
||
|
b. Overshoot is within plus and minus 2 percent. |
||
|
c. Overshoot is within plus and minus 3 percent. |
||
|
d. Overshoot is within plus and minus 4 percent. |
|
a. Response is fast. |
||
|
b. There is a short rise time. |
||
|
c. There is a short settling time. |
||
|
d. All of the above |
|
a. Maintain gain |
||
|
b. Increase gain |
||
|
c. Decrease gain |
||
|
d. None of the above |
|
a. Increase phase margin |
||
|
b. Decrease gain |
||
|
c. Maintain phase margin |
||
|
d. None of the above |
|
a. Bandwidth increases |
||
|
b. Bandwidth decreases |
||
|
c. Bandwidth is constant |
||
|
d. None of the above |
|
a. Input |
||
|
b. System |
||
|
c. Output |
||
|
d. All of the above |
|
a. “poly” |
||
|
b. “csim” |
||
|
c. “step” |
||
|
d. “evans” |
|
a. “ss2tf” |
||
|
b. “tf2ss” |
||
|
c. “roots” |
||
|
d. “evans” |
|
a. “syslin” |
||
|
b. “csim” |
||
|
c. “step” |
||
|
d. “evans” |
|
a. “syslin” |
||
|
b. “csim” |
||
|
c. “step” |
||
|
d. “evans” |
|
a. “syslin” |
||
|
b. “csim” |
||
|
c. “roots” |
||
|
d. “evans” |
|
a. “syslin” |
||
|
b. “csim” |
||
|
c. “roots” |
||
|
d. “evans” |
|
a. “roots” |
||
|
b. “csim” |
||
|
c. “syslin” |
||
|
d. “evans” |
|
a. “syslin” |
||
|
b. “csim” |
||
|
c. “roots” |
||
|
d. “evans” |
|
a. “syslin” |
||
|
b. “csim” |
||
|
c. “roots” |
||
|
d. “evans” |
|
a. “syslin” |
||
|
b. “csim” |
||
|
c. “roots” |
||
|
d. “evans” |
|
a. “ss2tf” |
||
|
b. “horner” |
||
|
c. “roots” |
||
|
d. “evans” |
|
a. “csim” |
||
|
b. “step” |
||
|
c. “bode” |
||
|
d. “nyquist” |
|
a. “csim” |
||
|
b. “step” |
||
|
c. “bode” |
||
|
d. “nyquist” |
|
a. “syslin” |
||
|
b. “csim” |
||
|
c. “step” |
||
|
d. “evans” |
|
a. “csim” |
||
|
b. “step” |
||
|
c. “bode” |
||
|
d. “nyquist” |
|
a. “syslin” |
||
|
b. “csim” |
||
|
c. “step” |
||
|
d. “evans” |
|
a. Vacuum tubes |
||
|
b. Transformers |
||
|
c. Microprocessors |
||
|
d. Opamps |
|
a. P controller |
||
|
b. PD controller |
||
|
c. PI controller |
||
|
d. PID controller |
|
a. P controller |
||
|
b. PD controller |
||
|
c. PI controller |
||
|
d. PID controller |
|
a. Digital control system uses digital computers. |
||
|
b. Digital control system uses digital signals. |
||
|
c. Measured data is converted from analog to digital. |
||
|
d. Measured data is converted from digital to analog. |
|
a. Manipulation is done in digital form. |
||
|
b. Manipulation is done in analog form. |
||
|
c. Both A and B |
||
|
d. None of the above |
|
a. Many systems are analog. |
||
|
b. Many systems are digital. |
||
|
c. Both A and B |
||
|
d. None of the above |
|
a. Performance of analog is greater than performance of digital. |
||
|
b. Performance of analog is less than performance of digital. |
||
|
c. Performance of analog is equal to performance of digital. |
||
|
d. None of the above |
|
a. Performance of analog is greater than performance of digital. |
||
|
b. Performance of analog is less than performance of digital. |
||
|
c. Performance of analog is equal to performance of digital. |
||
|
d. None of the above. |
|
a. Laplace |
||
|
b. State-space |
||
|
c. Both A and B |
||
|
d. None of the above |
|
a. Robust control systems have high sensitivities. |
||
|
b. Robust control systems have low sensitivities. |
||
|
c. Robust control is stable over wide range of parameter variations. |
||
|
d. All of the above |