a. Linear systems do not satisfy superposition. | ||
b. Linear systems do not satisfy homogeneity. | ||
c. Linear systems have one equilibrium point at origin. | ||
d. Linear systems have many equilibrium points at origin. |
a. Increases, decreases | ||
b. Increases, increases | ||
c. Increases, remains unchanged | ||
d. reRmains unchanged, increases |
a. "t" | ||
b. "s" | ||
c. "d" | ||
d. "g" |
a. 0 to 5 | ||
b. 0 to 1 | ||
c. 1 to 10 | ||
d. 0 to 0.1 |
a. Numerator | ||
b. Denominator | ||
c. Natural frequency | ||
d. Gain |
a. Flow | ||
b. Pressure | ||
c. Current | ||
d. Torque |
a. How much the system oscillates | ||
b. How fast the system oscillates | ||
c. Size of steady state response | ||
d. None of the above |
a. One | ||
b. Two | ||
c. Three | ||
d. Four |
a. Two | ||
b. Three | ||
c. Four | ||
d. Five |
a. How much the system oscillates | ||
b. How fast the system oscillates | ||
c. Size of steady state response | ||
d. None of the above |
a. Natural frequency | ||
b. Overshoot | ||
c. Gain | ||
d. All of the above |
a. Natural frequency | ||
b. Damping ratio | ||
c. Gain | ||
d. None of the above |
a. How much the system oscillates | ||
b. How fast the system oscillates | ||
c. Size of steady state response | ||
d. None of the above |
a. A transfer function is ratio of transform of input to transform of output. | ||
b. A transfer function is ratio of transform of output to transform of input. | ||
c. Both A and B | ||
d. None of the above |
a. Impulse | ||
b. Step | ||
c. Both A and B | ||
d. None of the above |
a. Capacitor | ||
b. Inductor | ||
c. Resistor | ||
d. All of the above |
a. Overdamped | ||
b. Underdamped | ||
c. Undamped | ||
d. All of the above |
a. Oscillations | ||
b. Overshoot | ||
c. Both A and B | ||
d. None of the above |
a. Ramp input | ||
b. Step input | ||
c. Constant input | ||
d. None of the above |
a. Gear train | ||
b. Four-bar linkage | ||
c. Transformer | ||
d. All of the above |
a. Transfer function applies to nonlinear system. | ||
b. Transfer function applies to stationary systems. | ||
c. During transfer function, computation all initial conditions are assumed as zero. | ||
d. Transfer function describes input-output dynamics. |
a. Loop method | ||
b. Node method | ||
c. Complex impedances | ||
d. Perimeter method |
a. Linear systems satisfy superposition. | ||
b. Linear systems satisfy homogeneity. | ||
c. Linear systems have two equilibrium points at origin. | ||
d. Linear systems have one equilibrium point at origin. |
a. Input variables originate outside the system. | ||
b. Input variables originate inside the system. | ||
c. Input variables are not affected by what happens in a system. | ||
d. All of the above |
a. Output variables are not influenced by input variables. | ||
b. Output variables do not regulate the system. | ||
c. Output variables do not monitor the system. | ||
d. Output variables are influenced by input variables. |
a. Two | ||
b. Three | ||
c. Four | ||
d. Five |
a. Time | ||
b. Frequency | ||
c. Both A and B | ||
d. None of the above |
a. Power gain | ||
b. Phase | ||
c. Margin | ||
d. Percentage overshoot |
a. 0 | ||
b. 1 | ||
c. -1 | ||
d. 2 |
a. 2 | ||
b. 4 | ||
c. 8 | ||
d. 10 |
a. 2 | ||
b. 4 | ||
c. 8 | ||
d. 10 |
a. 0 | ||
b. 180 | ||
c. 360 | ||
d. -180 |
a. Decibels | ||
b. Logarithmic scale | ||
c. Degrees | ||
d. Percentage overshoot |
a. Decibels | ||
b. Logarithmic scale | ||
c. Degrees | ||
d. Percentage overshoot |
a. Decibels | ||
b. Logarithmic scale | ||
c. Degrees | ||
d. Percentage overshoot |
a. More | ||
b. Less | ||
c. The same | ||
d. Zero |
a. Increases, decreases | ||
b. Increases, increases | ||
c. Increases, remains unchanged | ||
d. Remains unchanged, increases |
a. First | ||
b. Second | ||
c. Third | ||
d. Fourth |
a. 6 percent | ||
b. 8 percent | ||
c. 10 percent | ||
d. 12 percent |
a. 1 percent | ||
b. 0.05 percent | ||
c. 10 percent | ||
d. 0 percent |
a. 0 | ||
b. 1 | ||
c. 2 | ||
d. 3 |
a. 0 | ||
b. 1 | ||
c. 2 | ||
d. 3 |
a. Frequency of oscillations | ||
b. Reciprocal of time constant | ||
c. Undamped natural frequency | ||
d. None of the above |
a. Frequency of oscillations | ||
b. Reciprocal of time constant | ||
c. Undamped natural frequency | ||
d. None of the above |
a. Frequency of oscillations | ||
b. Reciprocal of time constant | ||
c. Undamped natural frequency | ||
d. None of the above |
a. Impulse | ||
b. Step | ||
c. Ramp | ||
d. Random |
a. At open loop zeros | ||
b. At closed loop zeros | ||
c. At open loop poles | ||
d. At closed loop poles |
a. At open loop zeros | ||
b. At closed loop zeros | ||
c. At open loop poles | ||
d. At closed loop poles |
a. A Nyquist plot uses the same plot to display amplitude and phase. | ||
b. A Nyquist plot cannot depict if a system is stable or unstable. | ||
c. Both A and B | ||
d. None of the above |
a. Phase margin | ||
b. Gain margin | ||
c. Both A and B | ||
d. None of the above |
a. Difference between input and measured varying output | ||
b. Difference between input and measured constant output | ||
c. Difference between measured constant input and measured varying output | ||
d. None of the above |
a. 0.2 | ||
b. 0.4 | ||
c. 0.6 | ||
d. 0.8 |
a. Phase lead | ||
b. Phase lag | ||
c. Integration | ||
d. All of the above |
a. Phase lead | ||
b. Phase lag | ||
c. Integration | ||
d. All of the above |
a. Open-loop time response | ||
b. Closed-loop time response | ||
c. Open-loop frequency response | ||
d. Closed-loop frequency response |
a. 0.1 | ||
b. 1 | ||
c. 2 | ||
d. 0 |
a. Added to | ||
b. Subtracted from | ||
c. Multiplied with | ||
d. Divided by |
a. 1 | ||
b. 0.1 | ||
c. 2 | ||
d. 0.01 |
a. P | ||
b. D | ||
c. PD | ||
d. PID |
a. Zero | ||
b. One | ||
c. Infinity | ||
d. Ten |
a. Zero | ||
b. One | ||
c. Infinity | ||
d. Ten |
a. AC | ||
b. DC | ||
c. On-Off | ||
d. Integral |
a. Phase margin | ||
b. Gain margin | ||
c. Natural frequency | ||
d. Overshoot |
a. 0.1 | ||
b. 0.01 | ||
c. 0 | ||
d. 1 |
a. Sensor | ||
b. Input | ||
c. Plant | ||
d. None of the above |
a. Sensor | ||
b. Input | ||
c. Plant | ||
d. None of the above |
a. Input | ||
b. Output | ||
c. Control effort | ||
d. Response |
a. Input | ||
b. Measured input | ||
c. Output | ||
d. Error |
a. Proportional control | ||
b. Integral control | ||
c. On-Off control | ||
d. Derivative control |
a. Zeros | ||
b. Poles | ||
c. Gain | ||
d. Phase |
a. Steady state error | ||
b. Phase margin | ||
c. Open loop gain | ||
d. Closed loop gain |
a. Proportional | ||
b. Integral | ||
c. On-Off | ||
d. Derivative |
a. Overshoot is within plus and minus 1 percent. | ||
b. Overshoot is within plus and minus 2 percent. | ||
c. Overshoot is within plus and minus 3 percent. | ||
d. Overshoot is within plus and minus 4 percent. |
a. Response is fast. | ||
b. There is a short rise time. | ||
c. There is a short settling time. | ||
d. All of the above |
a. Maintain gain | ||
b. Increase gain | ||
c. Decrease gain | ||
d. None of the above |
a. Increase phase margin | ||
b. Decrease gain | ||
c. Maintain phase margin | ||
d. None of the above |
a. Bandwidth increases | ||
b. Bandwidth decreases | ||
c. Bandwidth is constant | ||
d. None of the above |
a. Input | ||
b. System | ||
c. Output | ||
d. All of the above |
a. "poly" | ||
b. "csim" | ||
c. "step" | ||
d. "evans" |
a. "ss2tf" | ||
b. "tf2ss" | ||
c. "roots" | ||
d. "evans" |
a. "syslin" | ||
b. "csim" | ||
c. "step" | ||
d. "evans" |
a. "syslin" | ||
b. "csim" | ||
c. "step" | ||
d. "evans" |
a. "syslin" | ||
b. "csim" | ||
c. "roots" | ||
d. "evans" |
a. "syslin" | ||
b. "csim" | ||
c. "roots" | ||
d. "evans" |
a. "roots" | ||
b. "csim" | ||
c. "syslin" | ||
d. "evans" |
a. "syslin" | ||
b. "csim" | ||
c. "roots" | ||
d. "evans" |
a. "syslin" | ||
b. "csim" | ||
c. "roots" | ||
d. "evans" |
a. "syslin" | ||
b. "csim" | ||
c. "roots" | ||
d. "evans" |
a. "ss2tf" | ||
b. "horner" | ||
c. "roots" | ||
d. "evans" |
a. "csim" | ||
b. "step" | ||
c. "bode" | ||
d. "nyquist" |
a. "csim" | ||
b. "step" | ||
c. "bode" | ||
d. "nyquist" |
a. "syslin" | ||
b. "csim" | ||
c. "step" | ||
d. "evans" |
a. "csim" | ||
b. "step" | ||
c. "bode" | ||
d. "nyquist" |
a. "syslin" | ||
b. "csim" | ||
c. "step" | ||
d. "evans" |
a. Vacuum tubes | ||
b. Transformers | ||
c. Microprocessors | ||
d. Opamps |
a. P controller | ||
b. PD controller | ||
c. PI controller | ||
d. PID controller |
a. P controller | ||
b. PD controller | ||
c. PI controller | ||
d. PID controller |
a. Digital control system uses digital computers. | ||
b. Digital control system uses digital signals. | ||
c. Measured data is converted from analog to digital. | ||
d. Measured data is converted from digital to analog. |
a. Manipulation is done in digital form. | ||
b. Manipulation is done in analog form. | ||
c. Both A and B | ||
d. None of the above |
a. Many systems are analog. | ||
b. Many systems are digital. | ||
c. Both A and B | ||
d. None of the above |
a. Performance of analog is greater than performance of digital. | ||
b. Performance of analog is less than performance of digital. | ||
c. Performance of analog is equal to performance of digital. | ||
d. None of the above |
a. Performance of analog is greater than performance of digital. | ||
b. Performance of analog is less than performance of digital. | ||
c. Performance of analog is equal to performance of digital. | ||
d. None of the above. |
a. Laplace | ||
b. State-space | ||
c. Both A and B | ||
d. None of the above |
a. Robust control systems have high sensitivities. | ||
b. Robust control systems have low sensitivities. | ||
c. Robust control is stable over wide range of parameter variations. | ||
d. All of the above |